Xiaoli Wang , Juhua Luo , Huajun Zhao , Yuhan Wu , Xing Liu , Yu Xie
{"title":"LaFe-MOFs derivatives with different compositions for boosting low-frequency and broadband electromagnetic wave absorption","authors":"Xiaoli Wang , Juhua Luo , Huajun Zhao , Yuhan Wu , Xing Liu , Yu Xie","doi":"10.1016/j.mtnano.2024.100528","DOIUrl":null,"url":null,"abstract":"<div><div>To achieve low-frequency and broadband electromagnetic wave absorption (EMWA), building excellent metal-organic frameworks (MOFs)-derived EMWA materials is critical but remains challenging. In this research, La<sub>2</sub>O<sub>3</sub>/La<sub>2</sub>O<sub>2</sub>CN<sub>2</sub>/Fe/N-doped carbon (LFC) composites with different compositions were synthesized by adjusting the La<sup>3+</sup> content to tune the electromagnetic parameters. As the La<sup>3+</sup> content increased, the EMWA performance showed a trend of first increasing and then decreasing. As a result, LFC-2 achieved a minimum reflection loss (RL<sub>min</sub>) value of −60.82 dB at a thickness of 2.60 mm when the molar ratio of La<sup>3+</sup> to Fe<sup>3+</sup> was 1: 1, along with an effective absorption bandwidth value of 5.76 GHz (9.84–15.60 GHz) at 2.29 mm. Moreover, the EMWA performance of LFC-3 at low-frequency (4.08 GHz) was enhanced when the La³⁺ to Fe³⁺ molar ratio was 2: 1, with an RL<sub>min</sub> value of −47.47 dB. Comprehensive characterizations suggested that the formation of the La<sub>2</sub>O<sub>2</sub>CN<sub>2</sub> phase played an indispensable role in optimizing impedance matching and enhancing magnetic loss and dielectric loss. In addition, La<sup>3+</sup> had a high coordination number, which effectively regulated the electromagnetic parameters. Concurrently, radar cross-section simulation results confirmed the outstanding EMWA capability of the LFC coating. This work proposed a strategy for LaFe-MOFs derivatives, shedding light on the foundation for designing more efficient low-frequency and broadband absorbent materials.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100528"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000786","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve low-frequency and broadband electromagnetic wave absorption (EMWA), building excellent metal-organic frameworks (MOFs)-derived EMWA materials is critical but remains challenging. In this research, La2O3/La2O2CN2/Fe/N-doped carbon (LFC) composites with different compositions were synthesized by adjusting the La3+ content to tune the electromagnetic parameters. As the La3+ content increased, the EMWA performance showed a trend of first increasing and then decreasing. As a result, LFC-2 achieved a minimum reflection loss (RLmin) value of −60.82 dB at a thickness of 2.60 mm when the molar ratio of La3+ to Fe3+ was 1: 1, along with an effective absorption bandwidth value of 5.76 GHz (9.84–15.60 GHz) at 2.29 mm. Moreover, the EMWA performance of LFC-3 at low-frequency (4.08 GHz) was enhanced when the La³⁺ to Fe³⁺ molar ratio was 2: 1, with an RLmin value of −47.47 dB. Comprehensive characterizations suggested that the formation of the La2O2CN2 phase played an indispensable role in optimizing impedance matching and enhancing magnetic loss and dielectric loss. In addition, La3+ had a high coordination number, which effectively regulated the electromagnetic parameters. Concurrently, radar cross-section simulation results confirmed the outstanding EMWA capability of the LFC coating. This work proposed a strategy for LaFe-MOFs derivatives, shedding light on the foundation for designing more efficient low-frequency and broadband absorbent materials.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites