Xinghan Huang , Ximing Zhang , Guoke Wei , Hang Zhang , Shujuan Tan , Guangbin Ji
{"title":"3D printed PEEK/CF nanocomposites metamaterial for enhanced resonances toward microwave absorption and compatible camouflage","authors":"Xinghan Huang , Ximing Zhang , Guoke Wei , Hang Zhang , Shujuan Tan , Guangbin Ji","doi":"10.1016/j.mtnano.2024.100530","DOIUrl":null,"url":null,"abstract":"<div><div>The stealth materials for future weapons and equipment need to operate within the radar working band, be lightweight, easy to process, and compatible with infrared stealth. Integrating all these characteristics poses a significant challenge. This work utilizes poly (ether-ether-ketone)/carbon fibers (PEEK/CF) composite materials and employed reverse-guided manufacturing through simulation design. Incorporating a grid structure within the pyramid metamaterial enables electromagnetic wave reflecting multiple times in various directions. By optimizing the important interaction between dielectric properties of the materials structures,the Pyramid Grid Filled Metamaterial enables broadband electromagnetic wave absorption (<-10 dB, 8–18 GHz), weak angular dependence (5- 45<sup>o</sup> incidence), polarization insensitivity, radar cross section (RCS) reduction (reduction over 10 dB between θ = −60° and 60°), and infrared camouflage performance. The PGF metamaterial of 180◊180 mm<sup>2</sup>, weighs only 103.1 g at a thickness of 9 mm. This work paves a way for the design the radar infrared compatible composite metamaterials.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100530"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000804","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The stealth materials for future weapons and equipment need to operate within the radar working band, be lightweight, easy to process, and compatible with infrared stealth. Integrating all these characteristics poses a significant challenge. This work utilizes poly (ether-ether-ketone)/carbon fibers (PEEK/CF) composite materials and employed reverse-guided manufacturing through simulation design. Incorporating a grid structure within the pyramid metamaterial enables electromagnetic wave reflecting multiple times in various directions. By optimizing the important interaction between dielectric properties of the materials structures,the Pyramid Grid Filled Metamaterial enables broadband electromagnetic wave absorption (<-10 dB, 8–18 GHz), weak angular dependence (5- 45o incidence), polarization insensitivity, radar cross section (RCS) reduction (reduction over 10 dB between θ = −60° and 60°), and infrared camouflage performance. The PGF metamaterial of 180◊180 mm2, weighs only 103.1 g at a thickness of 9 mm. This work paves a way for the design the radar infrared compatible composite metamaterials.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites