Implementation strategy for launch and performance improvement of high throughput manufacturing inspection systems

IF 1.9 Q3 ENGINEERING, MANUFACTURING
J. Patrick Spicer , Debejyo Chakraborty , Michael Wincek , Jeffrey Abell
{"title":"Implementation strategy for launch and performance improvement of high throughput manufacturing inspection systems","authors":"J. Patrick Spicer ,&nbsp;Debejyo Chakraborty ,&nbsp;Michael Wincek ,&nbsp;Jeffrey Abell","doi":"10.1016/j.mfglet.2024.09.018","DOIUrl":null,"url":null,"abstract":"<div><div>Product technologies are changing rapidly in advanced automotive propulsion systems. These products are driving the need for new manufacturing processes and new inspection methods. To keep new propulsion systems affordable and ensure these new products are introduced with high quality, automotive manufacturers are seeking automated inspection solutions with low cost and near-zero error rates to inspect 100% of the items. In this paper, a progressive deployment strategy of a hybrid inspection system is presented and studied in the context of technology development and rapid deployment. It enabled us to begin with human inspection and gradually phase-in automated inspection technology, while almost never failing to identify a bad item. This strategy was applied successfully to inspect ultrasonic welds in lithium ion battery packs. At the time of this study, a 75% reduction in human inspection was achieved with prospects for further reduction. Actual results from the implementation of this strategy in production are presented. Recommendations are made regarding the most appropriate time to employ this strategy and how it could increase the use of advanced automated in-line inspection technologies.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 143-152"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846324000750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Product technologies are changing rapidly in advanced automotive propulsion systems. These products are driving the need for new manufacturing processes and new inspection methods. To keep new propulsion systems affordable and ensure these new products are introduced with high quality, automotive manufacturers are seeking automated inspection solutions with low cost and near-zero error rates to inspect 100% of the items. In this paper, a progressive deployment strategy of a hybrid inspection system is presented and studied in the context of technology development and rapid deployment. It enabled us to begin with human inspection and gradually phase-in automated inspection technology, while almost never failing to identify a bad item. This strategy was applied successfully to inspect ultrasonic welds in lithium ion battery packs. At the time of this study, a 75% reduction in human inspection was achieved with prospects for further reduction. Actual results from the implementation of this strategy in production are presented. Recommendations are made regarding the most appropriate time to employ this strategy and how it could increase the use of advanced automated in-line inspection technologies.
启动高产能制造检测系统并提高其性能的实施战略
先进汽车推进系统的产品技术日新月异。这些产品推动了对新制造工艺和新检测方法的需求。为了使新的推进系统价格合理,并确保推出的新产品具有高质量,汽车制造商正在寻求成本低、误差率接近零的自动检测解决方案,以实现 100% 的项目检测。本文介绍了混合检测系统的渐进部署战略,并结合技术开发和快速部署进行了研究。它使我们能够从人工检测开始,逐步引入自动检测技术,同时几乎从未出现过无法识别不良物品的情况。这一策略已成功应用于锂离子电池组的超声波焊缝检测。在进行这项研究时,人工检测已减少 75%,并有望进一步减少。本文介绍了在生产中实施这一策略的实际结果。就采用该策略的最合适时间以及如何增加先进的自动在线检测技术的使用提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信