A virtual reality-based immersive teleoperation system for remote human-robot collaborative manufacturing

IF 1.9 Q3 ENGINEERING, MANUFACTURING
Ke Wan, Chengxi Li, Fo-Sing Lo, Pai Zheng
{"title":"A virtual reality-based immersive teleoperation system for remote human-robot collaborative manufacturing","authors":"Ke Wan,&nbsp;Chengxi Li,&nbsp;Fo-Sing Lo,&nbsp;Pai Zheng","doi":"10.1016/j.mfglet.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the cutting-edge technologies in smart manufacturing have presented promising opportunities for the utilization of human-robot collaborative teleoperation in personalized manufacturing tasks. To effectively leverage the creative capabilities of humans while benefiting from the efficiency and stability of robots, the provision of an intuitive teleoperation interface assumes paramount importance. However, current teleoperation systems still face limitations in terms of intuitive operability. In this study, we present a virtual reality-based teleoperation system that offers operators a more intuitive interaction platform for robot control, thereby facilitating personalized manufacturing processes. The overall system framework design, as well as the main components are elaborated in detail. Furthermore, an evaluative case study based on the battery disassembly task is conducted to assess the performance of the proposed system. The results demonstrate that the proposed teleoperation system exhibits improved intuitiveness.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 43-50"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846324000658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the cutting-edge technologies in smart manufacturing have presented promising opportunities for the utilization of human-robot collaborative teleoperation in personalized manufacturing tasks. To effectively leverage the creative capabilities of humans while benefiting from the efficiency and stability of robots, the provision of an intuitive teleoperation interface assumes paramount importance. However, current teleoperation systems still face limitations in terms of intuitive operability. In this study, we present a virtual reality-based teleoperation system that offers operators a more intuitive interaction platform for robot control, thereby facilitating personalized manufacturing processes. The overall system framework design, as well as the main components are elaborated in detail. Furthermore, an evaluative case study based on the battery disassembly task is conducted to assess the performance of the proposed system. The results demonstrate that the proposed teleoperation system exhibits improved intuitiveness.
基于虚拟现实的沉浸式远程操纵系统,用于远程人机协作制造
近年来,智能制造领域的尖端技术为在个性化制造任务中利用人机协作远程操作提供了大有可为的机会。为了有效利用人类的创造能力,同时从机器人的效率和稳定性中获益,提供直观的远程操作界面至关重要。然而,当前的远程操纵系统在直观操作性方面仍然面临着限制。在本研究中,我们提出了一种基于虚拟现实的远程操纵系统,它为操作员提供了一个更直观的机器人控制交互平台,从而促进了个性化制造流程。我们详细阐述了系统的整体框架设计和主要组件。此外,还进行了一项基于电池拆卸任务的评估性案例研究,以评估所提议系统的性能。结果表明,所提出的远程操作系统具有更好的直观性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信