{"title":"Thermal reaction based mesoscale ablation model for phase degradation and pyrolysis of needle-punched composite","authors":"Yu Chen , Ran Tao , Yiqi Mao","doi":"10.1016/j.compscitech.2024.110898","DOIUrl":null,"url":null,"abstract":"<div><div>Needle-punched composites are highly valued for their exceptional resistance to interlaminar properties, ablation, and design flexibility, making them increasingly popular in aerospace thermal protection systems. This work investigates the mesoscale structural characteristics and thermophysical properties of needle-punched composites in ablation process. Oxyacetylene ablation experiments were carried out at different temperatures, and a mesoscopic needle-punched structure model was established based on the results of CT characterization. Further, Abaqus custom subroutine was used to reveal the ablation evolution mechanism of carbon fiber reinforced phenolic resin-based needle-punched composites. The results show that, at mesoscopic scale, the acicular fiber bundle perpendicular to the ablative surface accelerates the heat conduction to the interior of the material and promotes the thermal damage and performance degradation of the composite.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110898"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004688","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Needle-punched composites are highly valued for their exceptional resistance to interlaminar properties, ablation, and design flexibility, making them increasingly popular in aerospace thermal protection systems. This work investigates the mesoscale structural characteristics and thermophysical properties of needle-punched composites in ablation process. Oxyacetylene ablation experiments were carried out at different temperatures, and a mesoscopic needle-punched structure model was established based on the results of CT characterization. Further, Abaqus custom subroutine was used to reveal the ablation evolution mechanism of carbon fiber reinforced phenolic resin-based needle-punched composites. The results show that, at mesoscopic scale, the acicular fiber bundle perpendicular to the ablative surface accelerates the heat conduction to the interior of the material and promotes the thermal damage and performance degradation of the composite.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.