Siyuan Qiu , Yajiao Li , Yi An , Wenhao Wang , Yuanmin Chen , Ke Chen , Daming Wu , Jingyao Sun
{"title":"3D printing, leakage-proof, and flexible phase change composites for thermal management application","authors":"Siyuan Qiu , Yajiao Li , Yi An , Wenhao Wang , Yuanmin Chen , Ke Chen , Daming Wu , Jingyao Sun","doi":"10.1016/j.compscitech.2024.110905","DOIUrl":null,"url":null,"abstract":"<div><div>Phase change composites (PCCs) have attracted much attention in the fields of thermal management due to their high latent heat. However, their risk of leakage and poor shape designability greatly limit their industrial applications. Therefore, there is an urgent need to develop leakage-proof and customizable PCCs to meet the emerging requirements of thermal management applications. Some scholars have proposed the concept of preparing PCCs by 3D printing technology, aiming to meet customized thermal management requirements of various electronic devices. Nevertheless, the phase change material leaking of PCCs under high temperature is still a tough problem to solve. In this study, expanded graphite (EG) is used as the carrier for paraffin wax (PW), which names as EP can tightly enveloping PW in its porous structure. Then, an innovative carbomer gel ink is prepared for 3D printing using EP and short carbon fiber (SCF) as thermal conductive fillers. Freeze-drying and polydimethylsiloxane (PDMS) infiltrating procedures are furtherly performed to ensure the flexibility of final PCCs samples. A maximum thermal conductivity of 2.89 W/(m·K) is obtained when the content of SCF/EP filler is 10 wt%. Importantly, the flexible PCCs prepared through this method effectively prevent the PW leaking during thermal management applications, thereby avoiding the consequent safety risks and enhancing the lifespan of electronic devices. This work opens up a promising pathway for the rapid fabrication of leakage-proof, customizable and flexible PCCs.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110905"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004755","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Phase change composites (PCCs) have attracted much attention in the fields of thermal management due to their high latent heat. However, their risk of leakage and poor shape designability greatly limit their industrial applications. Therefore, there is an urgent need to develop leakage-proof and customizable PCCs to meet the emerging requirements of thermal management applications. Some scholars have proposed the concept of preparing PCCs by 3D printing technology, aiming to meet customized thermal management requirements of various electronic devices. Nevertheless, the phase change material leaking of PCCs under high temperature is still a tough problem to solve. In this study, expanded graphite (EG) is used as the carrier for paraffin wax (PW), which names as EP can tightly enveloping PW in its porous structure. Then, an innovative carbomer gel ink is prepared for 3D printing using EP and short carbon fiber (SCF) as thermal conductive fillers. Freeze-drying and polydimethylsiloxane (PDMS) infiltrating procedures are furtherly performed to ensure the flexibility of final PCCs samples. A maximum thermal conductivity of 2.89 W/(m·K) is obtained when the content of SCF/EP filler is 10 wt%. Importantly, the flexible PCCs prepared through this method effectively prevent the PW leaking during thermal management applications, thereby avoiding the consequent safety risks and enhancing the lifespan of electronic devices. This work opens up a promising pathway for the rapid fabrication of leakage-proof, customizable and flexible PCCs.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.