A method for constructing graphs with the same resistance spectrum

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"A method for constructing graphs with the same resistance spectrum","authors":"","doi":"10.1016/j.disc.2024.114284","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a simple graph with vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and edge set <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The resistance distance <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> between two vertices <span><math><mi>x</mi><mo>,</mo><mi>y</mi></math></span> of <em>G</em>, is defined to be the effective resistance between the two vertices in the corresponding electrical network in which each edge of <em>G</em> is replaced by a unit resistor. The resistance spectrum <span><math><mi>RS</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> is the multiset of the resistance distances between all pairs of vertices in the graph. This paper presents a novel method for constructing graphs with the same resistance spectrum. It is obtained that for any positive integer <em>k</em>, there exist at least <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup></math></span> graphs with the same resistance spectrum. Furthermore, it is shown that for <span><math><mi>n</mi><mo>≥</mo><mn>10</mn></math></span>, there are at least <span><math><mn>2</mn><mo>(</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>10</mn><mo>)</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>9</mn><mo>)</mo><mo>+</mo><mi>q</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>9</mn><mo>)</mo><mo>)</mo></math></span> pairs of graphs of order <em>n</em> with the same resistance spectrum, where <span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>9</mn><mo>)</mo></math></span> and <span><math><mi>q</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>9</mn><mo>)</mo></math></span> are the numbers of partitions of the integer <span><math><mi>n</mi><mo>−</mo><mn>9</mn></math></span> and simple graphs of order <span><math><mi>n</mi><mo>−</mo><mn>9</mn></math></span>, respectively.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004151","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a simple graph with vertex set V(G) and edge set E(G). The resistance distance RG(x,y) between two vertices x,y of G, is defined to be the effective resistance between the two vertices in the corresponding electrical network in which each edge of G is replaced by a unit resistor. The resistance spectrum RS(G) of a graph G is the multiset of the resistance distances between all pairs of vertices in the graph. This paper presents a novel method for constructing graphs with the same resistance spectrum. It is obtained that for any positive integer k, there exist at least 2k graphs with the same resistance spectrum. Furthermore, it is shown that for n10, there are at least 2((n10)p(n9)+q(n9)) pairs of graphs of order n with the same resistance spectrum, where p(n9) and q(n9) are the numbers of partitions of the integer n9 and simple graphs of order n9, respectively.
构建具有相同电阻谱的图形的方法
假设 G 是一个简单图,具有顶点集 V(G) 和边集 E(G)。G 的两个顶点 x,y 之间的电阻距离 RG(x,y) 定义为两个顶点之间在相应电网络中的有效电阻,其中 G 的每条边都由一个单位电阻代替。图 G 的电阻谱 RS(G) 是图中所有顶点对之间电阻距离的多集。本文提出了一种构建具有相同电阻谱的图的新方法。结果表明,对于任意正整数 k,至少存在 2k 个具有相同电阻谱的图。此外,对于 n≥10,至少存在 2((n-10)p(n-9)+q(n-9)) 对具有相同阻力谱的 n 阶图形,其中 p(n-9) 和 q(n-9) 分别是整数 n-9 和 n-9 阶简单图形的分区数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信