Svetlana Shmavonyan, Aleksandr Khanbekyan, Marina Movsisyan, Aram Papoyan
{"title":"Scanning technique for direct optical transmission imaging of highly-scattering objects","authors":"Svetlana Shmavonyan, Aleksandr Khanbekyan, Marina Movsisyan, Aram Papoyan","doi":"10.1016/j.optlaseng.2024.108633","DOIUrl":null,"url":null,"abstract":"<div><div>We present a spatial scanning technique for optical transmission imaging of strongly-scattering objects based on spatially-selective registration of ballistic photons originating from modulated (pulsed) laser radiation. The registration system counts the number of transmitted pulses at any pixel, forming a grayscale image. By choosing modulation regime, it is possible to record a real analog image or to outline contours of the image features, without necessity of software image processing. The developed system is tested on model scattering object (stack of paper) and biological object (human hand). Due to the automatic adjustment of the signal level, realized by the appropriate laser modulation mode, formation of an image with a structure uniformly pronounced across the aperture has been attained, even under conditions of significant changes in background transmission.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108633"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006110","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a spatial scanning technique for optical transmission imaging of strongly-scattering objects based on spatially-selective registration of ballistic photons originating from modulated (pulsed) laser radiation. The registration system counts the number of transmitted pulses at any pixel, forming a grayscale image. By choosing modulation regime, it is possible to record a real analog image or to outline contours of the image features, without necessity of software image processing. The developed system is tested on model scattering object (stack of paper) and biological object (human hand). Due to the automatic adjustment of the signal level, realized by the appropriate laser modulation mode, formation of an image with a structure uniformly pronounced across the aperture has been attained, even under conditions of significant changes in background transmission.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques