{"title":"Design and construction of a continuous industrial scale cold plasma equipment for fresh produce industry","authors":"N.N. Misra , V.P. Sreelakshmi , Tejas Naladala , Khalid J. Alzahrani , P.S. Negi","doi":"10.1016/j.ifset.2024.103840","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the design, construction, and evaluation of a novel continuous industrial-scale cold plasma system optimized for the treatment of fresh produce. The system integrates multiple plasma modules with a multipin-to-plate discharge configuration, ensuring efficient generation of reactive oxygen and nitrogen species at relatively low voltages. The cold plasma modules are combined with a conveyor mechanism, allowing for continuous, uniform exposure of irregularly shaped food items, such as tomatoes, to reactive plasma species. Notably, the system operates using ambient air, and incorporates modularity for easy scalability, making it suitable for both small-scale enterprises and large-scale industrial applications.</div><div>Experimental trials on tomatoes demonstrated reductions in microbial load, with the system effectively enhancing product safety while minimizing power consumption. Moreover, the integration of cold storage further extended shelf life, although optimization of plasma treatment parameters remains necessary to preserve bioactive compounds like lycopene and ascorbic acid. This research fills a critical gap in scaling cold plasma technology for industrial use, providing a sustainable and energy-efficient solution for food disinfection. The results highlight the potential of this system to meet industry demands for safe and efficient on-farm and small-scale enterprise disinfection.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"97 ","pages":"Article 103840"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856424002790","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the design, construction, and evaluation of a novel continuous industrial-scale cold plasma system optimized for the treatment of fresh produce. The system integrates multiple plasma modules with a multipin-to-plate discharge configuration, ensuring efficient generation of reactive oxygen and nitrogen species at relatively low voltages. The cold plasma modules are combined with a conveyor mechanism, allowing for continuous, uniform exposure of irregularly shaped food items, such as tomatoes, to reactive plasma species. Notably, the system operates using ambient air, and incorporates modularity for easy scalability, making it suitable for both small-scale enterprises and large-scale industrial applications.
Experimental trials on tomatoes demonstrated reductions in microbial load, with the system effectively enhancing product safety while minimizing power consumption. Moreover, the integration of cold storage further extended shelf life, although optimization of plasma treatment parameters remains necessary to preserve bioactive compounds like lycopene and ascorbic acid. This research fills a critical gap in scaling cold plasma technology for industrial use, providing a sustainable and energy-efficient solution for food disinfection. The results highlight the potential of this system to meet industry demands for safe and efficient on-farm and small-scale enterprise disinfection.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.