Periodic dimple lines on the surface of the grain-boundary free (100) Si thin films grown by the continuous-wave laser crystallization

IF 1.7 4区 材料科学 Q3 CRYSTALLOGRAPHY
Satoshi Takayama , Nobuo Sasaki , Yukiharu Uraoka
{"title":"Periodic dimple lines on the surface of the grain-boundary free (100) Si thin films grown by the continuous-wave laser crystallization","authors":"Satoshi Takayama ,&nbsp;Nobuo Sasaki ,&nbsp;Yukiharu Uraoka","doi":"10.1016/j.jcrysgro.2024.127934","DOIUrl":null,"url":null,"abstract":"<div><div>Periodic dimple lines have been found by the atomic-force-microscopy on the surface of the grain-boundary free (100) Si films obtained by the continuous-wave laser crystallization. The dimple lines are straight and run parallel each other to the scan direction regularly at a period of ∼3.1 μm. The depth of the dimple lines is 3∼5 nm (peak-to-valley). The internal angle of the dimple lines is ∼179.4°. These dimple lines originate from hyperfine sub-boundaries with a boundary energy of 2.4 × 10<sup>−6</sup> J/cm<sup>2</sup>, a rotation angle θ of ∼0.061°, and a dislocation spacing of ∼0.36 μm.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"649 ","pages":"Article 127934"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824003725","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Periodic dimple lines have been found by the atomic-force-microscopy on the surface of the grain-boundary free (100) Si films obtained by the continuous-wave laser crystallization. The dimple lines are straight and run parallel each other to the scan direction regularly at a period of ∼3.1 μm. The depth of the dimple lines is 3∼5 nm (peak-to-valley). The internal angle of the dimple lines is ∼179.4°. These dimple lines originate from hyperfine sub-boundaries with a boundary energy of 2.4 × 10−6 J/cm2, a rotation angle θ of ∼0.061°, and a dislocation spacing of ∼0.36 μm.
连续波激光结晶法生长的无晶界 (100) 硅薄膜表面的周期性凹痕线
通过连续波激光结晶技术获得的无晶界(100)硅薄膜表面的原子力显微镜发现了周期性凹痕线。这些凹痕线是直线,以 ∼3.1 μm 的周期有规律地平行于扫描方向。凹痕线的深度为 3 ∼ 5 nm(峰-谷)。酒窝线的内角为 ∼179.4°。这些酒窝线源自超精细子边界,边界能量为 2.4 × 10-6 J/cm2,旋转角 θ 为 ∼ 0.061°,位错间距为 ∼ 0.36 μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Crystal Growth
Journal of Crystal Growth 化学-晶体学
CiteScore
3.60
自引率
11.10%
发文量
373
审稿时长
65 days
期刊介绍: The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信