Taqi A.M. Shatnawi , Stephane Y. Tchoumi , Herieth Rwezaura , Khalid Dib , Jean M. Tchuenche , Mo’tassem Al-arydah
{"title":"A two-strain COVID-19 co-infection model with strain 1 vaccination","authors":"Taqi A.M. Shatnawi , Stephane Y. Tchoumi , Herieth Rwezaura , Khalid Dib , Jean M. Tchuenche , Mo’tassem Al-arydah","doi":"10.1016/j.padiff.2024.100945","DOIUrl":null,"url":null,"abstract":"<div><div>COVID-19 has caused substantial morbidity and mortality worldwide. Previous models of strain 1 vaccination with re-infection when vaccinated, as well as infection with strain 2 did not consider co-infected classes. To fill this gap, a two co-circulating COVID-19 strains model with strain 1 vaccination, and co-infected is formulated and theoretically analyzed. Sufficient conditions for the stability of the disease-free equilibrium and single-strain 1 and -strain 2 endemic equilibria are obtained. Results show as expected that (1) co-infected classes play a role in the transmission dynamics of the disease (2) a high efficacy vaccine could effectively help mitigate the spread of co-infection with both strain 1 and 2 compared to the low-efficacy vaccine. Sensitivity analysis reveals that the main drivers of the effective reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> are primarily the effective contact rate for strain 2 (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), the strain 2 recovery rate (<span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>), and the vaccine efficacy or infection reduction due to the vaccine (<span><math><mi>η</mi></math></span>). Thus, implementing intervention measures to mitigate the spread of COVID-19 should not ignore the co-infected individuals who can potentially spread both strains of the disease.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100945"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
COVID-19 has caused substantial morbidity and mortality worldwide. Previous models of strain 1 vaccination with re-infection when vaccinated, as well as infection with strain 2 did not consider co-infected classes. To fill this gap, a two co-circulating COVID-19 strains model with strain 1 vaccination, and co-infected is formulated and theoretically analyzed. Sufficient conditions for the stability of the disease-free equilibrium and single-strain 1 and -strain 2 endemic equilibria are obtained. Results show as expected that (1) co-infected classes play a role in the transmission dynamics of the disease (2) a high efficacy vaccine could effectively help mitigate the spread of co-infection with both strain 1 and 2 compared to the low-efficacy vaccine. Sensitivity analysis reveals that the main drivers of the effective reproduction number are primarily the effective contact rate for strain 2 (), the strain 2 recovery rate (), and the vaccine efficacy or infection reduction due to the vaccine (). Thus, implementing intervention measures to mitigate the spread of COVID-19 should not ignore the co-infected individuals who can potentially spread both strains of the disease.