S. Yılmaz , S.B. Töreli , M. Tomakin , İ. Polat , E. Bacaksız
{"title":"CBD-synthesized Mg-doped CdS thin films for hybrid solar cells and self-powered photodetectors","authors":"S. Yılmaz , S.B. Töreli , M. Tomakin , İ. Polat , E. Bacaksız","doi":"10.1016/j.physb.2024.416622","DOIUrl":null,"url":null,"abstract":"<div><div>Mg-doped CdS samples were deposited via chemical bath deposition onto fluorine-doped tin oxide slides with varying levels of Mg-doping. Structural analysis revealed improved crystal quality in CdS films upon Mg incorporation. Morphological examinations indicated a reduction in grain size alongside appearance of smooth, void-free surfaces particularly evident at 3 % Mg-doping. Mg-doping also resulted in enhanced transparency of CdS films, notably at 3 % and 5 % within the visible spectrum. Efficient exciton dissociation was observed in hybrid solar cells based on 1 % and 3 % Mg-doped CdS, as evidenced by photoluminescence. Top-performing solar cell achieved an efficiency of 0.220 %, nearly seven times that of control device. 5 % Mg-doped CdS-based photodetectors exhibited favorable photosensing characteristics: a responsivity of 0.011 A/W, detectivity of 4.4 × 10<sup>8</sup> Jones, external quantum efficiency of 3.1 %, and rise/decay times of 26/25 ms at zero bias. These findings underscore beneficial effects of Mg-doping on both hybrid solar cell and self-driven photodetector performance.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"696 ","pages":"Article 416622"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624009633","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Mg-doped CdS samples were deposited via chemical bath deposition onto fluorine-doped tin oxide slides with varying levels of Mg-doping. Structural analysis revealed improved crystal quality in CdS films upon Mg incorporation. Morphological examinations indicated a reduction in grain size alongside appearance of smooth, void-free surfaces particularly evident at 3 % Mg-doping. Mg-doping also resulted in enhanced transparency of CdS films, notably at 3 % and 5 % within the visible spectrum. Efficient exciton dissociation was observed in hybrid solar cells based on 1 % and 3 % Mg-doped CdS, as evidenced by photoluminescence. Top-performing solar cell achieved an efficiency of 0.220 %, nearly seven times that of control device. 5 % Mg-doped CdS-based photodetectors exhibited favorable photosensing characteristics: a responsivity of 0.011 A/W, detectivity of 4.4 × 108 Jones, external quantum efficiency of 3.1 %, and rise/decay times of 26/25 ms at zero bias. These findings underscore beneficial effects of Mg-doping on both hybrid solar cell and self-driven photodetector performance.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces