Rahul Kumar , Yurii Maidaniuk , Fernando Maia de Oliveira , Yuriy I. Mazur , Gregory J. Salamo
{"title":"Temperature dependent optical properties of ultrathin InAs quantum well","authors":"Rahul Kumar , Yurii Maidaniuk , Fernando Maia de Oliveira , Yuriy I. Mazur , Gregory J. Salamo","doi":"10.1016/j.jlumin.2024.120939","DOIUrl":null,"url":null,"abstract":"<div><div>Temperature-dependent photoluminescence (TDPL) and time-resolved photoluminescence (TRPL) of ultrathin InAs quantum wells (QWs) in GaAs matrix have been investigated to understand the optical properties of carriers. Samples containing different thicknesses of InAs (0.5, 0.75, 1, 1.2, 1.4 monolayers) have been used for this study. The PL peak position of InAs with temperature does not follow the Varshni model at low temperatures. The activation energy (<em>E</em><sub><em>A</em></sub>) of these QWs has been calculated from TDPL. As expected, the thinnest QW sample (0.5 monolayer) results in the smallest <em>E</em><sub><em>A</em></sub> of 23 meV, whereas the thickest QW sample (1.4 monolayer) results in the highest E<sub>A</sub> of 79 meV. Carrier lifetime has been calculated from TRPL measurement for varying temperatures. At 10 K, the carrier lifetime increased almost linearly from 250 to 800 ps with the InAs QW thickness. Thicker InAs QW results in a longer carrier lifetime, which has been explained by the carrier escape model. Higher temperatures resulted in a decrease in carrier lifetime, which suggests carrier escape is dominating the temporal decay behavior.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120939"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324005039","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature-dependent photoluminescence (TDPL) and time-resolved photoluminescence (TRPL) of ultrathin InAs quantum wells (QWs) in GaAs matrix have been investigated to understand the optical properties of carriers. Samples containing different thicknesses of InAs (0.5, 0.75, 1, 1.2, 1.4 monolayers) have been used for this study. The PL peak position of InAs with temperature does not follow the Varshni model at low temperatures. The activation energy (EA) of these QWs has been calculated from TDPL. As expected, the thinnest QW sample (0.5 monolayer) results in the smallest EA of 23 meV, whereas the thickest QW sample (1.4 monolayer) results in the highest EA of 79 meV. Carrier lifetime has been calculated from TRPL measurement for varying temperatures. At 10 K, the carrier lifetime increased almost linearly from 250 to 800 ps with the InAs QW thickness. Thicker InAs QW results in a longer carrier lifetime, which has been explained by the carrier escape model. Higher temperatures resulted in a decrease in carrier lifetime, which suggests carrier escape is dominating the temporal decay behavior.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.