On dual Kadec norms

IF 1.7 2区 数学 Q1 MATHEMATICS
Petr Hájek
{"title":"On dual Kadec norms","authors":"Petr Hájek","doi":"10.1016/j.jfa.2024.110698","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>‖</mo><mo>⋅</mo><mo>‖</mo><mo>)</mo></math></span> be a Banach space such that all <span><math><msup><mrow><mi>w</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convergent sequences in the dual unit sphere <span><math><msub><mrow><mi>S</mi></mrow><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msub></math></span> are also norm convergent. Then the weak<sup>⁎</sup> and norm topologies agree on <span><math><msub><mrow><mi>S</mi></mrow><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msub></math></span>. By known results it implies that <em>X</em> has a renorming whose dual is locally uniformly rotund, hence also <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Fréchet smooth. In particular, <em>X</em> is an Asplund space. Our results also lend an alternative proof of the celebrated Josefson-Nissenzweig theorem.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110698"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003860","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (X,) be a Banach space such that all w-convergent sequences in the dual unit sphere SX are also norm convergent. Then the weak and norm topologies agree on SX. By known results it implies that X has a renorming whose dual is locally uniformly rotund, hence also C1-Fréchet smooth. In particular, X is an Asplund space. Our results also lend an alternative proof of the celebrated Josefson-Nissenzweig theorem.
关于双卡德克规范
设(X,‖⋅‖)是一个巴拿赫空间,其对偶单位球 SX⁎中所有 w⁎ 收敛序列也是规范收敛的。那么弱⁎拓扑和规范拓扑在 SX⁎上是一致的。根据已知结果,这意味着 X 有一个重重整,其对偶是局部均匀旋转的,因此也是 C1-弗雷谢特光滑的。特别是,X 是一个阿斯普朗德空间。我们的结果还为著名的约瑟夫森-尼森茨威格定理提供了另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信