{"title":"Damage evolution and failure mechanism of 2.5D woven composite tubes under quasi-static lateral compression","authors":"Yajuan Wang, Zunqing Wang, Xiaoxu Wang, Diantang Zhang","doi":"10.1016/j.compstruct.2024.118635","DOIUrl":null,"url":null,"abstract":"<div><div>2.5D woven composites are ideal candidate materials for deep-sea pressure tubes owing to their excellent out-of-plane properties. This paper presents the damage evolution and failure mechanism of 2.5D woven composite tubes under quasi-static lateral compression. To conduct this study, 2.5D woven composite tubes with different thickness-to-diameter ratios, 0.04, 0.07 and 0.10, were designed and prepared. The quasi-static lateral compression tests were carried out in order to evaluate the progressive damage analysis, combining high speed photographic image with acoustic emission technologies. The results show that the increase of the ratio of thickness-to-diameter, the deformation and shear failure of the sample can be inhibited obviously. Due to the enhanced interlayer interaction, the lateral stiffness of the sample is obviously improved, so the lateral bearing stability of the sample is improved. When the peak load of samples with the thickness-to-diameter ratio of 0.1 reached 11.51 kN, it exceeded that of samples with thickness-to-diameter ratios of 0.04 and 0.07 by 450% and 82%, respectively. Furthermore, the failure mechanisms of samples with the thickness-to-diameter ratio of 0.1 were controlled by delamination fracture, whereas that of 0.04 and 0.07 were mainly influenced by shear failure and delamination failure, respectively.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"351 ","pages":"Article 118635"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007633","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
2.5D woven composites are ideal candidate materials for deep-sea pressure tubes owing to their excellent out-of-plane properties. This paper presents the damage evolution and failure mechanism of 2.5D woven composite tubes under quasi-static lateral compression. To conduct this study, 2.5D woven composite tubes with different thickness-to-diameter ratios, 0.04, 0.07 and 0.10, were designed and prepared. The quasi-static lateral compression tests were carried out in order to evaluate the progressive damage analysis, combining high speed photographic image with acoustic emission technologies. The results show that the increase of the ratio of thickness-to-diameter, the deformation and shear failure of the sample can be inhibited obviously. Due to the enhanced interlayer interaction, the lateral stiffness of the sample is obviously improved, so the lateral bearing stability of the sample is improved. When the peak load of samples with the thickness-to-diameter ratio of 0.1 reached 11.51 kN, it exceeded that of samples with thickness-to-diameter ratios of 0.04 and 0.07 by 450% and 82%, respectively. Furthermore, the failure mechanisms of samples with the thickness-to-diameter ratio of 0.1 were controlled by delamination fracture, whereas that of 0.04 and 0.07 were mainly influenced by shear failure and delamination failure, respectively.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.