Microbiome analysis of the lithophytic resurrection plant Ramonda heldreichii, reveals root driven tight-rhizosphere vs elevation specific loose-rhizosphere communities
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kusum Dhakar , Loukia M. Kellari , Panagiotis A. Karas , Athanasios Theodorakopoulos , Michael N. Styllas , Evangelia S. Papadopoulou , Dimitrios G. Karpouzas , Kalliope K. Papadopoulou , Sotirios Vasileiadis
{"title":"Microbiome analysis of the lithophytic resurrection plant Ramonda heldreichii, reveals root driven tight-rhizosphere vs elevation specific loose-rhizosphere communities","authors":"Kusum Dhakar , Loukia M. Kellari , Panagiotis A. Karas , Athanasios Theodorakopoulos , Michael N. Styllas , Evangelia S. Papadopoulou , Dimitrios G. Karpouzas , Kalliope K. Papadopoulou , Sotirios Vasileiadis","doi":"10.1016/j.rhisph.2024.100969","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated the root microbiome of a relict resurrection (desiccation/frost-tolerant/resistant) plant, endemic to Mount Olympus (Litochoro, Greece), <em>Ramonda heldreichii</em> (Boiss.) C.B.Clarke, at various altitudes (400 m–1200 m asl), through amplicon sequencing. Microbial communities (prokaryotes, fungi, protists) revealed the significant impact of roots on the tight rhizosphere (TR) that were less diverse and less altitude-impacted compared with the loose rhizosphere (LR). Prokaryotic α-diversity was highly affected by root, whereas that of fungi was comparatively more sensitive to altitude. The TR-associated taxonomic groups, included well equipped taxa for tolerating biotic and abiotic stresses (drought/metal tolerance, microcystin degradation, psychrotolerance, chitin degradation) with Cercozoa dominating protists, while the LR-associated taxa mainly included microorganisms with chemolithoautotrophic potential. Relative abundances of the N-cycling and greenhouse gas associated <em>Nitrosopheraceae</em>, were increased with altitude. Collectively, the study of <em>R. heldreichii</em> demonstrated a plant-driven TR with bioprospecting potential, and an elevation-shaped and climate-linked LR, providing novel insights about mountain microbiology.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824001241","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the root microbiome of a relict resurrection (desiccation/frost-tolerant/resistant) plant, endemic to Mount Olympus (Litochoro, Greece), Ramonda heldreichii (Boiss.) C.B.Clarke, at various altitudes (400 m–1200 m asl), through amplicon sequencing. Microbial communities (prokaryotes, fungi, protists) revealed the significant impact of roots on the tight rhizosphere (TR) that were less diverse and less altitude-impacted compared with the loose rhizosphere (LR). Prokaryotic α-diversity was highly affected by root, whereas that of fungi was comparatively more sensitive to altitude. The TR-associated taxonomic groups, included well equipped taxa for tolerating biotic and abiotic stresses (drought/metal tolerance, microcystin degradation, psychrotolerance, chitin degradation) with Cercozoa dominating protists, while the LR-associated taxa mainly included microorganisms with chemolithoautotrophic potential. Relative abundances of the N-cycling and greenhouse gas associated Nitrosopheraceae, were increased with altitude. Collectively, the study of R. heldreichii demonstrated a plant-driven TR with bioprospecting potential, and an elevation-shaped and climate-linked LR, providing novel insights about mountain microbiology.