{"title":"Frequency-independent dual-tuned cable traps for multi-nuclear MRI and MRS","authors":"Yijin Yang , Ming Lu , Xinqiang Yan","doi":"10.1016/j.jmr.2024.107786","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) of non-proton nuclei (X-nuclei) typically require additional proton imaging for anatomical reference and B<sub>0</sub> shimming. Therefore, two RF systems exist, necessitating cable traps to block the unwanted common-mode current at both Larmor frequencies of <sup>1</sup>H and X-nuclei. This study introduces a frequency-independent dual-tuned cable trap that combines a standard solenoid cable trap with a float solenoid trap to independently tune high and low frequencies without compromising performance. The methods involved theoretical analysis, electromagnetic simulations, and bench tests. Two design approaches were evaluated: a float cable trap for <sup>1</sup>H, a non-float cable trap for X-nuclei, and vice versa. Results showed that the design with the float trap for X-nuclei and non-float for <sup>1</sup>H had superior performance, with high common-mode current suppression ability at both frequencies. Bench tests confirmed these findings, demonstrating effectiveness across various static fields and X-nuclei. The proposed frequency-independent dual-tuned cable trap provides a compact and efficient solution for multinuclear MRI and MRS, enhancing safety, image quality, and flexibility.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107786"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001708","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) of non-proton nuclei (X-nuclei) typically require additional proton imaging for anatomical reference and B0 shimming. Therefore, two RF systems exist, necessitating cable traps to block the unwanted common-mode current at both Larmor frequencies of 1H and X-nuclei. This study introduces a frequency-independent dual-tuned cable trap that combines a standard solenoid cable trap with a float solenoid trap to independently tune high and low frequencies without compromising performance. The methods involved theoretical analysis, electromagnetic simulations, and bench tests. Two design approaches were evaluated: a float cable trap for 1H, a non-float cable trap for X-nuclei, and vice versa. Results showed that the design with the float trap for X-nuclei and non-float for 1H had superior performance, with high common-mode current suppression ability at both frequencies. Bench tests confirmed these findings, demonstrating effectiveness across various static fields and X-nuclei. The proposed frequency-independent dual-tuned cable trap provides a compact and efficient solution for multinuclear MRI and MRS, enhancing safety, image quality, and flexibility.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.