{"title":"Miura transformations and large-time behaviors of the Hirota-Satsuma equation","authors":"Deng-Shan Wang, Cheng Zhu, Xiaodong Zhu","doi":"10.1016/j.jde.2024.10.006","DOIUrl":null,"url":null,"abstract":"<div><div>The good Boussinesq equation has several modified versions, such as the modified Boussinesq equation, Mikhailov-Lenells equation and Hirota-Satsuma equation. This work builds the full relations among these equations by Miura transformation and invertible linear transformations and draws a pyramid diagram to demonstrate such relations. The direct and inverse spectral analysis shows that the solution of Riemann-Hilbert problem for Hirota-Satsuma equation has a simple pole at origin, the solution of Riemann-Hilbert problem for the good Boussinesq equation has double pole at origin, while the solution of Riemann-Hilbert problem for the modified Boussinesq equation and Mikhailov-Lenells equation doesn't have singularity at origin. Further, the large-time asymptotic behaviors of the Hirota-Satsuma equation with Schwartz class initial value are studied by Deift-Zhou nonlinear steepest descent analysis. In such initial conditions, the asymptotic expressions away from the origin are derived and it is shown that the leading term of asymptotic formulas matches well with the direct numerical simulations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006569","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The good Boussinesq equation has several modified versions, such as the modified Boussinesq equation, Mikhailov-Lenells equation and Hirota-Satsuma equation. This work builds the full relations among these equations by Miura transformation and invertible linear transformations and draws a pyramid diagram to demonstrate such relations. The direct and inverse spectral analysis shows that the solution of Riemann-Hilbert problem for Hirota-Satsuma equation has a simple pole at origin, the solution of Riemann-Hilbert problem for the good Boussinesq equation has double pole at origin, while the solution of Riemann-Hilbert problem for the modified Boussinesq equation and Mikhailov-Lenells equation doesn't have singularity at origin. Further, the large-time asymptotic behaviors of the Hirota-Satsuma equation with Schwartz class initial value are studied by Deift-Zhou nonlinear steepest descent analysis. In such initial conditions, the asymptotic expressions away from the origin are derived and it is shown that the leading term of asymptotic formulas matches well with the direct numerical simulations.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics