Wenkang Miao , Yuan Li , Hao Yin , Lang Cao , Jincheng Liu
{"title":"Flower-like and porous Ni3S2 nanosheets for high performance supercapacitors","authors":"Wenkang Miao , Yuan Li , Hao Yin , Lang Cao , Jincheng Liu","doi":"10.1016/j.jelechem.2024.118695","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal sulfides have received significant attention as electrode materials for their low cost and high specific capacitance. Herein, flower-like and porous Ni<sub>3</sub>S<sub>2</sub>-120-10 assembled by nanosheets is directly grown on nickel foams through a facile one-step hydrothermal method. Benefited from the porous structure, the flower-like compound offers respectable gravimetric specific capacitance of 1899.4F g<sup>−1</sup> at a current density of 1 A/g in 6 M KOH aqueous electrolyte. Moreover, an asymmetric supercapacitor (ASC) was obtained using Ni<sub>3</sub>S<sub>2</sub>-120-10 as the positive electrode and active carbon as the negative electrode with 6 M KOH as the electrolyte. Ni<sub>3</sub>S<sub>2</sub>-120-10//AC displays a high power density of 1590.7 W kg<sup>−1</sup> at the energy density of 17.6 Wh kg<sup>−1</sup> accompanied with an outstanding cyclic stability (83.2 % of initial capacitance after 8000 cycles). This work provides a facile strategy for the next generation energy-storage applications with high stability and superior electrochemical capacity.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"974 ","pages":"Article 118695"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724006738","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal sulfides have received significant attention as electrode materials for their low cost and high specific capacitance. Herein, flower-like and porous Ni3S2-120-10 assembled by nanosheets is directly grown on nickel foams through a facile one-step hydrothermal method. Benefited from the porous structure, the flower-like compound offers respectable gravimetric specific capacitance of 1899.4F g−1 at a current density of 1 A/g in 6 M KOH aqueous electrolyte. Moreover, an asymmetric supercapacitor (ASC) was obtained using Ni3S2-120-10 as the positive electrode and active carbon as the negative electrode with 6 M KOH as the electrolyte. Ni3S2-120-10//AC displays a high power density of 1590.7 W kg−1 at the energy density of 17.6 Wh kg−1 accompanied with an outstanding cyclic stability (83.2 % of initial capacitance after 8000 cycles). This work provides a facile strategy for the next generation energy-storage applications with high stability and superior electrochemical capacity.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.