Emmanuel Dan , Alan J. McCue , Davide Dionisi , Claudia Fernández Martín
{"title":"The role of the activation heating source on the carbon capture performance of two new adsorbents produced from household-mixed-plastic waste","authors":"Emmanuel Dan , Alan J. McCue , Davide Dionisi , Claudia Fernández Martín","doi":"10.1016/j.jcou.2024.102950","DOIUrl":null,"url":null,"abstract":"<div><div>This study reveals the impact of the activation with microwave and conventional heating sources on textural properties and CO<sub>2</sub> uptake of a mixed plastic-based char. Two mixed plastic-based adsorbents, one activated using microwaves and the other using conventional heating, were produced at optimum activation conditions, and subsequently compared. The findings show that both heating sources produced microporous adsorbents, but activation heating sources influenced their physicochemical properties and CO<sub>2</sub> uptake. The microwave-produced activated carbon (AC) displayed superior BET surface area, total, micro- and ultra-micropore volumes compared to the conventionally produced AC. The microwave-produced AC possessed CO<sub>2</sub> adsorption capacities of 1.66 and 2.37 mmol/g under dynamic and equilibrium conditions, respectively, at 25 °C and 1 bar. These capacities represent an 8 and 30 % higher uptake, respectively, compared to the 1.53 and 1.66 mmol/g displayed by the conventionally prepared AC under the same adsorption conditions. Both samples displayed stable and excellent CO<sub>2</sub> recyclability over 10 adsorption-desorption cycles, with desorption efficiencies ranging from 93.46 % to 96.72 % (microwave- and conventionally- produced ACs respectively). The Avrami model most accurately described the experimental CO<sub>2</sub> adsorption data under dynamic conditions, while the Sip model gave the best fit for equilibrium conditions. These findings apply to both types of ACs at various temperatures, irrespective of the heating source. Overall microwave heating is more efficient than conventional heating, requiring 300°C lower temperature, 115 minutes shorter time, 0.79 kWh less energy, and less KOH. It improves CO<sub>2</sub> uptake and reduces production costs by 80 %, offering a sustainable alternative for CO<sub>2</sub> adsorbent production.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"89 ","pages":"Article 102950"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024002853","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study reveals the impact of the activation with microwave and conventional heating sources on textural properties and CO2 uptake of a mixed plastic-based char. Two mixed plastic-based adsorbents, one activated using microwaves and the other using conventional heating, were produced at optimum activation conditions, and subsequently compared. The findings show that both heating sources produced microporous adsorbents, but activation heating sources influenced their physicochemical properties and CO2 uptake. The microwave-produced activated carbon (AC) displayed superior BET surface area, total, micro- and ultra-micropore volumes compared to the conventionally produced AC. The microwave-produced AC possessed CO2 adsorption capacities of 1.66 and 2.37 mmol/g under dynamic and equilibrium conditions, respectively, at 25 °C and 1 bar. These capacities represent an 8 and 30 % higher uptake, respectively, compared to the 1.53 and 1.66 mmol/g displayed by the conventionally prepared AC under the same adsorption conditions. Both samples displayed stable and excellent CO2 recyclability over 10 adsorption-desorption cycles, with desorption efficiencies ranging from 93.46 % to 96.72 % (microwave- and conventionally- produced ACs respectively). The Avrami model most accurately described the experimental CO2 adsorption data under dynamic conditions, while the Sip model gave the best fit for equilibrium conditions. These findings apply to both types of ACs at various temperatures, irrespective of the heating source. Overall microwave heating is more efficient than conventional heating, requiring 300°C lower temperature, 115 minutes shorter time, 0.79 kWh less energy, and less KOH. It improves CO2 uptake and reduces production costs by 80 %, offering a sustainable alternative for CO2 adsorbent production.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.