Vicente Gonzales, Chris Rightsell, Alejandro Morales Betancourt, Kelly L. Nash
{"title":"Non-enzymatic glucose detection via ordered 2D arrays of nickel and nickel chitosan nanowires","authors":"Vicente Gonzales, Chris Rightsell, Alejandro Morales Betancourt, Kelly L. Nash","doi":"10.1016/j.snr.2024.100249","DOIUrl":null,"url":null,"abstract":"<div><div>Glucose sensors play a vital role in the everyday healthcare needs of diabetic patients. However, glucose sensor cost and reliability, particularly regarding their standard functionalization with expensive and environmentally sensitive enzymes, remains a challenge. A method for the fabrication of nickel nanowire arrays (NWAs) coated with a thin layer of chitosan for the non-enzymatic detection of glucose is herein reported. The method is based on the electrodeposition of nickel into anodic aluminum oxide (AAO) templates, followed by a novel chitosan coating procedure. The nickel and nickel chitosan NWAs were characterized via electron microscopy, Raman spectroscopy, and electrochemical techniques. Electrochemical testing using cyclic voltammetry and chronoamperometry demonstrated that the chitosan coating enhanced the selectivity and stability of the electrochemical sensor for glucose detection, even in the presence of interfering species. Additionally, the coating improved the sensor's sensitivity by 46.39 % and expanded its linear detection range from 3.85 mM to 4.37 mM. The chitosan coating also helped to retain these characteristics even after exposure to physiologically accurate samples and prevented biofouling after exposure to proteins. This simple and robust glucose sensor paves the way for the fabrication of glucose sensors with a high linear range without the need for functionalization with traditional glucose detecting agents such as glucose oxidase.</div></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100249"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucose sensors play a vital role in the everyday healthcare needs of diabetic patients. However, glucose sensor cost and reliability, particularly regarding their standard functionalization with expensive and environmentally sensitive enzymes, remains a challenge. A method for the fabrication of nickel nanowire arrays (NWAs) coated with a thin layer of chitosan for the non-enzymatic detection of glucose is herein reported. The method is based on the electrodeposition of nickel into anodic aluminum oxide (AAO) templates, followed by a novel chitosan coating procedure. The nickel and nickel chitosan NWAs were characterized via electron microscopy, Raman spectroscopy, and electrochemical techniques. Electrochemical testing using cyclic voltammetry and chronoamperometry demonstrated that the chitosan coating enhanced the selectivity and stability of the electrochemical sensor for glucose detection, even in the presence of interfering species. Additionally, the coating improved the sensor's sensitivity by 46.39 % and expanded its linear detection range from 3.85 mM to 4.37 mM. The chitosan coating also helped to retain these characteristics even after exposure to physiologically accurate samples and prevented biofouling after exposure to proteins. This simple and robust glucose sensor paves the way for the fabrication of glucose sensors with a high linear range without the need for functionalization with traditional glucose detecting agents such as glucose oxidase.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.