Kristbjörg Edda Jónsdóttir , John Reidar Mathiassen , Eirik Svendsen , Carolyn Mary Rosten , Nina Bloecher , Martin Føre , Rolf Erik Olsen , Bengt Finstad , Zsolt Volent
{"title":"Detection of a stress related acoustic signature by passive acoustic monitoring in Atlantic salmon farming","authors":"Kristbjörg Edda Jónsdóttir , John Reidar Mathiassen , Eirik Svendsen , Carolyn Mary Rosten , Nina Bloecher , Martin Føre , Rolf Erik Olsen , Bengt Finstad , Zsolt Volent","doi":"10.1016/j.aquaeng.2024.102472","DOIUrl":null,"url":null,"abstract":"<div><div>Crowding is a necessary operation for moving fish out of or between sea cages in Atlantic salmon farming. These operations consist of gradually reducing available volume in the nets to increase the biomass density. This is known to stress the fish, increase risk of injury, and can in extreme cases increase mortality rates. To reduce the negative impacts of crowding, the operation must be adjusted based on real-time monitoring of fish welfare. Today, this is mainly done by manually monitoring surface activity, as the high fish density limits the use of available tools. In this paper a new approach for monitoring was applied to crowding of meso-scale cages containing 40 fish each, using automatic detection of passive acoustic signatures. Four synchronised hydrophones were deployed and the acoustic signature was defined from the recordings. The automatic detection algorithm recorded an extreme increase in registered acoustic events during crowding, as high as 1000 events per 10 min period, compared to only 20 events per 10 min period on the day following crowding. Correlating the number of acoustic events to recorded heart rate and activity measures from implants in the salmon indicate that automatically registering acoustic events is a promising method for monitoring farmed fish.</div></div>","PeriodicalId":8120,"journal":{"name":"Aquacultural Engineering","volume":"107 ","pages":"Article 102472"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquacultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144860924000839","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Crowding is a necessary operation for moving fish out of or between sea cages in Atlantic salmon farming. These operations consist of gradually reducing available volume in the nets to increase the biomass density. This is known to stress the fish, increase risk of injury, and can in extreme cases increase mortality rates. To reduce the negative impacts of crowding, the operation must be adjusted based on real-time monitoring of fish welfare. Today, this is mainly done by manually monitoring surface activity, as the high fish density limits the use of available tools. In this paper a new approach for monitoring was applied to crowding of meso-scale cages containing 40 fish each, using automatic detection of passive acoustic signatures. Four synchronised hydrophones were deployed and the acoustic signature was defined from the recordings. The automatic detection algorithm recorded an extreme increase in registered acoustic events during crowding, as high as 1000 events per 10 min period, compared to only 20 events per 10 min period on the day following crowding. Correlating the number of acoustic events to recorded heart rate and activity measures from implants in the salmon indicate that automatically registering acoustic events is a promising method for monitoring farmed fish.
期刊介绍:
Aquacultural Engineering is concerned with the design and development of effective aquacultural systems for marine and freshwater facilities. The journal aims to apply the knowledge gained from basic research which potentially can be translated into commercial operations.
Problems of scale-up and application of research data involve many parameters, both physical and biological, making it difficult to anticipate the interaction between the unit processes and the cultured animals. Aquacultural Engineering aims to develop this bioengineering interface for aquaculture and welcomes contributions in the following areas:
– Engineering and design of aquaculture facilities
– Engineering-based research studies
– Construction experience and techniques
– In-service experience, commissioning, operation
– Materials selection and their uses
– Quantification of biological data and constraints