Artificial intelligence and numerical study of the heat transfer and entropy generation analysis of NEPCM-MWCNTs-Water Hybrid Nanofluids inside a quadrilateral enclosure
{"title":"Artificial intelligence and numerical study of the heat transfer and entropy generation analysis of NEPCM-MWCNTs-Water Hybrid Nanofluids inside a quadrilateral enclosure","authors":"","doi":"10.1016/j.csite.2024.105258","DOIUrl":null,"url":null,"abstract":"<div><div>In the present investigation, the primary objective is to assess the synergistic impact of a novel hybrid nanofluid composed of nano-enhanced phase change material, multi-walled carbon nanotubes, and water. The governing equations are transformed into dimensionless forms for a more generalized analysis. To solve the problem, the Galerkin finite element method is employed, offering a robust numerical approach. A dataset of 1000 records was created by numerically solving the model for various combinations of control parameters. Using the dataset, a neural network was trained to learn the relationship between control parameters and heat transfer rate. The evaluation outcomes are comprehensively illustrated through key parameters, including local and average Nusselt numbers, total entropy generation, contours, and streamlines in the range of 10<sup>3</sup><Rayleigh number<10<sup>5</sup>, 0<nanotube concentration<0.025, 0<nano capsule concentration <0.025, and 0.1<non-dimensional fusion temperature <0.7. Remarkably, the results indicate a substantial improvement in the heat transfer rate of the suspension for a hybrid concentration of 5 %, showcasing an impressive 13 % enhancement in contrast to the water host fluid's performance. Notably, the observed rise in entropy generation is relatively moderate, only a 5 % increase.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24012899","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present investigation, the primary objective is to assess the synergistic impact of a novel hybrid nanofluid composed of nano-enhanced phase change material, multi-walled carbon nanotubes, and water. The governing equations are transformed into dimensionless forms for a more generalized analysis. To solve the problem, the Galerkin finite element method is employed, offering a robust numerical approach. A dataset of 1000 records was created by numerically solving the model for various combinations of control parameters. Using the dataset, a neural network was trained to learn the relationship between control parameters and heat transfer rate. The evaluation outcomes are comprehensively illustrated through key parameters, including local and average Nusselt numbers, total entropy generation, contours, and streamlines in the range of 103<Rayleigh number<105, 0<nanotube concentration<0.025, 0<nano capsule concentration <0.025, and 0.1<non-dimensional fusion temperature <0.7. Remarkably, the results indicate a substantial improvement in the heat transfer rate of the suspension for a hybrid concentration of 5 %, showcasing an impressive 13 % enhancement in contrast to the water host fluid's performance. Notably, the observed rise in entropy generation is relatively moderate, only a 5 % increase.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.