In Situ Generatable and Recyclable Oxygen Vacancy-Modified Fe2O3-Decorated WO3 Nanowires with Super Stability for ppb-Level H2S Sensing

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Sibo Zhang, Lu Fang, Zhengmao Cao, Xinyi Dai, Wu Wang, Qin Geng, Minghua Zhou, Shihan Zhang, Fan Dong, Si Chen
{"title":"In Situ Generatable and Recyclable Oxygen Vacancy-Modified Fe2O3-Decorated WO3 Nanowires with Super Stability for ppb-Level H2S Sensing","authors":"Sibo Zhang, Lu Fang, Zhengmao Cao, Xinyi Dai, Wu Wang, Qin Geng, Minghua Zhou, Shihan Zhang, Fan Dong, Si Chen","doi":"10.1021/acssensors.4c01772","DOIUrl":null,"url":null,"abstract":"Detecting hydrogen sulfide (H<sub>2</sub>S) odor gas in the environment at parts-per-billion-level concentrations is crucial. However, a significant challenge is the rapid deactivation caused by SO<sub>4</sub><sup>2–</sup> deposition. To address this issue, we developed a sensing material comprising Fe<sub>2</sub>O<sub>3</sub>-decorated WO<sub>3</sub> nanowires (FWO) with strong interfacial interaction. During the H<sub>2</sub>S sensing process, important oxygen vacancies (OVs) are generated <i>in situ</i> and are recyclable on the surface of the Fe<sub>2</sub>O<sub>3</sub> cluster. This sensor achieves a response of 140 (Ra/Rg) toward 50 ppm of H<sub>2</sub>S at 250 °C, with an experimentally measured detection limit of 1 ppb. It also exhibits remarkable stability, with no significant change observed over a long period of 150 days. Based on a combination of <i>in situ</i> DRIFT and DFT calculations, we have identified that the overactivation of O<sub>2</sub> is the key step in the formation of SO<sub>4</sub><sup>2–</sup>. This overactivation can be partially modulated by the synergistic effect of Fe<sub>2</sub>O<sub>3</sub> decoration and the <i>in situ</i> generated OVs, regulating the oxidation product to SO<sub>2</sub> rather than the toxic SO<sub>4</sub><sup>2–</sup>. Furthermore, the continuous generation of OVs compensates for the loss of active sites pertaining to SO<sub>4</sub><sup>2–</sup> deposition, thereby contributing to the excellent stability of the sensor. This study underscores the beneficial impact of <i>in situ</i> OV generation in FWO for H<sub>2</sub>S sensing, offering a dynamic strategy to enhance sensor performance, particularly in terms of stability.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"229 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c01772","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting hydrogen sulfide (H2S) odor gas in the environment at parts-per-billion-level concentrations is crucial. However, a significant challenge is the rapid deactivation caused by SO42– deposition. To address this issue, we developed a sensing material comprising Fe2O3-decorated WO3 nanowires (FWO) with strong interfacial interaction. During the H2S sensing process, important oxygen vacancies (OVs) are generated in situ and are recyclable on the surface of the Fe2O3 cluster. This sensor achieves a response of 140 (Ra/Rg) toward 50 ppm of H2S at 250 °C, with an experimentally measured detection limit of 1 ppb. It also exhibits remarkable stability, with no significant change observed over a long period of 150 days. Based on a combination of in situ DRIFT and DFT calculations, we have identified that the overactivation of O2 is the key step in the formation of SO42–. This overactivation can be partially modulated by the synergistic effect of Fe2O3 decoration and the in situ generated OVs, regulating the oxidation product to SO2 rather than the toxic SO42–. Furthermore, the continuous generation of OVs compensates for the loss of active sites pertaining to SO42– deposition, thereby contributing to the excellent stability of the sensor. This study underscores the beneficial impact of in situ OV generation in FWO for H2S sensing, offering a dynamic strategy to enhance sensor performance, particularly in terms of stability.

Abstract Image

具有超稳定性的原位生成和可回收氧空位修饰的 Fe2O3-Decorated WO3 纳米线,可用于 ppb 级 H2S 传感
检测环境中浓度为十亿分之一的硫化氢(H2S)气味气体至关重要。然而,SO42-沉积造成的快速失活是一个重大挑战。为了解决这个问题,我们开发了一种由具有强界面相互作用的 Fe2O3 装饰 WO3 纳米线(FWO)组成的传感材料。在 H2S 传感过程中,Fe2O3 簇表面会就地产生重要的氧空位(OV)并可循环使用。这种传感器在 250 °C 时对 50 ppm H2S 的响应为 140 (Ra/Rg),实验测量的检测限为 1 ppb。它还具有出色的稳定性,在长达 150 天的时间内未观察到明显变化。根据原位 DRIFT 和 DFT 计算,我们确定 O2 的过度活化是形成 SO42- 的关键步骤。这种过活化作用可以部分地受到 Fe2O3 装饰和原位生成的 OVs 的协同作用的调节,将氧化产物调节为 SO2 而不是有毒的 SO42-。此外,OV 的持续生成弥补了 SO42- 沉积造成的活性位点损失,从而使传感器具有出色的稳定性。这项研究强调了在 FWO 中原位生成 OV 对 H2S 传感的有益影响,为提高传感器性能(尤其是稳定性)提供了一种动态策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信