{"title":"Preparation, pore structure and properties of uniformly porous glass-ceramics sintered from granite powder using SiC@SiO2 foaming agent","authors":"Jian Zhou, Jinshan Lu, Changyou Liu, Liang Chen","doi":"10.1016/j.ceramint.2024.10.089","DOIUrl":null,"url":null,"abstract":"Granite sludge produced during the processing of granite blocks should be efficiently recycled for environmental protection and as a sustainable resource. In this work, porous glass-ceramics were prepared by stepwise sintering of granite powder using core-shell SiC@SiO<sub>2</sub> foaming agent. The SiC and SiC@SiO<sub>2</sub> foaming agents were compared in terms of the sintering and foaming behaviors of the powder compacts by thermal expansion, thermogravimetry and mass spectroscopy. The foaming agent and foaming temperature were investigated to study their effects on the pore structure and properties of the porous glass-ceramics. The SiO<sub>2</sub> shells of the SiC@SiO<sub>2</sub> particles inhibited the oxidation of the SiC cores and the release of CO<sub>2</sub> at the early stage of the sintering process, thus preventing pore coalescence and increasing the densification and specific strength of the sintered glass-ceramics. As the foaming temperature increased, the porous glass-ceramics exhibited a linear relationship between pore size and foaming temperature, and the specific strength first increased and then decreased due to pore coalescence and reduced crystallinity. Furthermore, the linear relationship between thermal conductivity and porosity indicates a closed pore structure, as demonstrated by computed tomography. At a foaming temperature of 1220 °C, the porous glass-ceramic has a porosity of 50.1%, a specific strength of 16.6 kN⋅m/kg and a thermal conductivity of 0.747 W/(m⋅K). Numerical simulation confirms that lightweight glazed glass-ceramics have potential applications in energy-efficient building tiles.","PeriodicalId":48790,"journal":{"name":"The Lancet Diabetes & Endocrinology","volume":"30 1","pages":""},"PeriodicalIF":44.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Diabetes & Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.10.089","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Granite sludge produced during the processing of granite blocks should be efficiently recycled for environmental protection and as a sustainable resource. In this work, porous glass-ceramics were prepared by stepwise sintering of granite powder using core-shell SiC@SiO2 foaming agent. The SiC and SiC@SiO2 foaming agents were compared in terms of the sintering and foaming behaviors of the powder compacts by thermal expansion, thermogravimetry and mass spectroscopy. The foaming agent and foaming temperature were investigated to study their effects on the pore structure and properties of the porous glass-ceramics. The SiO2 shells of the SiC@SiO2 particles inhibited the oxidation of the SiC cores and the release of CO2 at the early stage of the sintering process, thus preventing pore coalescence and increasing the densification and specific strength of the sintered glass-ceramics. As the foaming temperature increased, the porous glass-ceramics exhibited a linear relationship between pore size and foaming temperature, and the specific strength first increased and then decreased due to pore coalescence and reduced crystallinity. Furthermore, the linear relationship between thermal conductivity and porosity indicates a closed pore structure, as demonstrated by computed tomography. At a foaming temperature of 1220 °C, the porous glass-ceramic has a porosity of 50.1%, a specific strength of 16.6 kN⋅m/kg and a thermal conductivity of 0.747 W/(m⋅K). Numerical simulation confirms that lightweight glazed glass-ceramics have potential applications in energy-efficient building tiles.
期刊介绍:
The Lancet Diabetes & Endocrinology, an independent journal with a global perspective and strong clinical focus, features original clinical research, expert reviews, news, and opinion pieces in each monthly issue. Covering topics like diabetes, obesity, nutrition, and more, the journal provides insights into clinical advances and practice-changing research worldwide. It welcomes original research advocating change or shedding light on clinical practice, as well as informative reviews on related topics, especially those with global health importance and relevance to low-income and middle-income countries. The journal publishes various content types, including Articles, Reviews, Comments, Correspondence, Health Policy, and Personal Views, along with Series and Commissions aiming to drive positive change in clinical practice and health policy in diabetes and endocrinology.