{"title":"One-step pyrolysis derived Fe and heteroatom co-doped biochar composites for efficient microwave absorption","authors":"Shuangshuang Yang, Xingwei Wang, Chen Zhao, Chuanpeng Li, Qiangliang Yu, Bo Yu, Meirong Cai, Feng Zhou","doi":"10.1016/j.ceramint.2024.10.097","DOIUrl":null,"url":null,"abstract":"Electromagnetic (EM) pollution frequently disrupts the regular operation of sophisticated electrical devices, necessitating the urgent development of lightweight EM wave absorbers that possess powerful absorption capability. Herein, we report a simple method for the preparation of Fe and heteroatom co-doped biochar composites (FeX-BC, where X = N, S) by directly carbonizing the precursors of anhydrous FeCl<sub>3</sub>, cherry kernel powder, and heteroatom dopants (melamine or Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>·5H<sub>2</sub>O). By adding different amounts of dopants during the synthesis of the precursors, it is possible to adjust the heteroatom content of the FeX-BC samples with precision. It is worth mentioning that the FeN<sub>0.1</sub>-BC composite delivers the best EM wave absorption performance with an effective absorption bandwidth of 4.8 GHz and a minimal reflection loss of -63.2 dB. Furthermore, the significant attenuation of EM wave can be attributed to the synergistic interplay of magnetic loss, dielectric loss and the enhanced impedance matching. This study introduces a simple methodology for the fabrication of EM wave absorbers, a significant contribution to the synthesis, advancement, and functional applications of biomass-derived materials.","PeriodicalId":48790,"journal":{"name":"The Lancet Diabetes & Endocrinology","volume":"31 1","pages":""},"PeriodicalIF":44.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Diabetes & Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.10.097","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Electromagnetic (EM) pollution frequently disrupts the regular operation of sophisticated electrical devices, necessitating the urgent development of lightweight EM wave absorbers that possess powerful absorption capability. Herein, we report a simple method for the preparation of Fe and heteroatom co-doped biochar composites (FeX-BC, where X = N, S) by directly carbonizing the precursors of anhydrous FeCl3, cherry kernel powder, and heteroatom dopants (melamine or Na2S2O3·5H2O). By adding different amounts of dopants during the synthesis of the precursors, it is possible to adjust the heteroatom content of the FeX-BC samples with precision. It is worth mentioning that the FeN0.1-BC composite delivers the best EM wave absorption performance with an effective absorption bandwidth of 4.8 GHz and a minimal reflection loss of -63.2 dB. Furthermore, the significant attenuation of EM wave can be attributed to the synergistic interplay of magnetic loss, dielectric loss and the enhanced impedance matching. This study introduces a simple methodology for the fabrication of EM wave absorbers, a significant contribution to the synthesis, advancement, and functional applications of biomass-derived materials.
期刊介绍:
The Lancet Diabetes & Endocrinology, an independent journal with a global perspective and strong clinical focus, features original clinical research, expert reviews, news, and opinion pieces in each monthly issue. Covering topics like diabetes, obesity, nutrition, and more, the journal provides insights into clinical advances and practice-changing research worldwide. It welcomes original research advocating change or shedding light on clinical practice, as well as informative reviews on related topics, especially those with global health importance and relevance to low-income and middle-income countries. The journal publishes various content types, including Articles, Reviews, Comments, Correspondence, Health Policy, and Personal Views, along with Series and Commissions aiming to drive positive change in clinical practice and health policy in diabetes and endocrinology.