Dysprosium ion concentration variations and their comprehensive influence on the physical, structural and optical properties of multi-component borate glasses for luminescence tailoring
Amit Kumar , Anu , Ravina Lohan , Usha Rani , Isha Malik , Nisha Deopa , A.S. Rao , Anand Kumar
{"title":"Dysprosium ion concentration variations and their comprehensive influence on the physical, structural and optical properties of multi-component borate glasses for luminescence tailoring","authors":"Amit Kumar , Anu , Ravina Lohan , Usha Rani , Isha Malik , Nisha Deopa , A.S. Rao , Anand Kumar","doi":"10.1016/j.ceramint.2024.10.123","DOIUrl":null,"url":null,"abstract":"<div><div>A set of Zinc Strontium Lithium Fluoroborate (ZSLFB) glasses with different concentrations of Dysprosium ions (Dy<sup>3+</sup>) was created using the melt quench technique. The presence of non-crystallinity and various functional groups have been confirmed via X-Ray Diffraction (XRD) and Infrared Fourier Transform FT-IR measurements, respectively. The band gap values obtained from Tauc plot were utilised to analyse the optical characteristics. The photoluminescence (PL) emission spectra display three well-defined intensity peaks at wavelengths of 481, 574, and 664 nm. The intensity of peaks exhibits an ascending trend until a concentration of 0.5 mol% of Dy<sup>3+</sup> ions is reached, after which it decreases. The PL intensity maintains up to 82 % at 200° C to room temperature, showing excellent thermal stability. The Judd Ofelt (J-O) parameter values pursue the Ω<sub>2</sub> > Ω<sub>6</sub> > Ω<sub>4</sub> pattern, which shows its asymptotic nature. The CIE coordinates were assessed and determined to fall inside the white region. The interaction in the non-radiative energy transfer process was elucidated by utilizing the Dexter theory and Inokuti-Hiryama (I-H) model.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 12","pages":"Pages 16509-16523"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224046352","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
A set of Zinc Strontium Lithium Fluoroborate (ZSLFB) glasses with different concentrations of Dysprosium ions (Dy3+) was created using the melt quench technique. The presence of non-crystallinity and various functional groups have been confirmed via X-Ray Diffraction (XRD) and Infrared Fourier Transform FT-IR measurements, respectively. The band gap values obtained from Tauc plot were utilised to analyse the optical characteristics. The photoluminescence (PL) emission spectra display three well-defined intensity peaks at wavelengths of 481, 574, and 664 nm. The intensity of peaks exhibits an ascending trend until a concentration of 0.5 mol% of Dy3+ ions is reached, after which it decreases. The PL intensity maintains up to 82 % at 200° C to room temperature, showing excellent thermal stability. The Judd Ofelt (J-O) parameter values pursue the Ω2 > Ω6 > Ω4 pattern, which shows its asymptotic nature. The CIE coordinates were assessed and determined to fall inside the white region. The interaction in the non-radiative energy transfer process was elucidated by utilizing the Dexter theory and Inokuti-Hiryama (I-H) model.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.