Sikandar Hayat , Muhammad Azhar Khan , Raqiqa Tur Rasool , Haya Alhummiany , Ghulam Abbas Ashraf , Muhammad Junaid , Muhammad Arshad , Hisham S.M. Abd-Rabboh , Zahra Bayhan
{"title":"Impact of chromium substitution on structural, spectroscopic, and dielectric properties of Ba4Ni2Fe36O60 ceramics","authors":"Sikandar Hayat , Muhammad Azhar Khan , Raqiqa Tur Rasool , Haya Alhummiany , Ghulam Abbas Ashraf , Muhammad Junaid , Muhammad Arshad , Hisham S.M. Abd-Rabboh , Zahra Bayhan","doi":"10.1016/j.ceramint.2024.10.121","DOIUrl":null,"url":null,"abstract":"<div><div>Cr-substituted Ni<sub>2</sub>U hexaferrite series (Ba<sub>4</sub>Ni<sub>2</sub>Fe<sub>36-x</sub>Cr<sub>x</sub>O<sub>60</sub>for x = 0.0 to x = 2.0 with a step size of 0.5) was prepared via sol-gel auto-combustion route and annealed at 1200 °C for 6 h. The samples were investigated using XRD, FTIR, SEM, XPS, and high frequency (1 MHz–6 GHz) dielectric and microwave absorption measurements (VNA). XRD studies revealed that Cr<sup>3+</sup> ions successfully substituted in BaNi<sub>2</sub>U-type hexaferrite and have a single-phase structure. The average crystallite size decreased while the percentage of porosity increased with the substitution. FTIR spectra confirmed the formation of the hexaferrite phase in all compositions. SEM micrographs revealed that the prepared samples are hexagonal. XPS spectra show the presence of all constituent elements in the samples. The dielectric constant, dielectric loss, and A.C. conductivity of samples was analyzed. Cole-Cole plots with single semicircles of different radii show the grain and grain boundaries affecting the conduction process. Moreover, Cr-substitution enhanced the microwave absorption capability. The hexaferrite sample Ba<sub>4</sub>Ni<sub>2</sub>Fe<sub>35</sub> Cr<sub>1.0</sub>O<sub>60</sub>, with a pellet thickness of 1.81 mm, showed the highest M.W. absorption at 1.09 GHz frequency with a reflection loss (R.L.) value of −55 dB. The hexagonal-shaped morphology, high porosity, and enhanced reflection loss value suggest their use in high-frequency microwave applications.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 24","pages":"Pages 52707-52722"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224046339","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cr-substituted Ni2U hexaferrite series (Ba4Ni2Fe36-xCrxO60for x = 0.0 to x = 2.0 with a step size of 0.5) was prepared via sol-gel auto-combustion route and annealed at 1200 °C for 6 h. The samples were investigated using XRD, FTIR, SEM, XPS, and high frequency (1 MHz–6 GHz) dielectric and microwave absorption measurements (VNA). XRD studies revealed that Cr3+ ions successfully substituted in BaNi2U-type hexaferrite and have a single-phase structure. The average crystallite size decreased while the percentage of porosity increased with the substitution. FTIR spectra confirmed the formation of the hexaferrite phase in all compositions. SEM micrographs revealed that the prepared samples are hexagonal. XPS spectra show the presence of all constituent elements in the samples. The dielectric constant, dielectric loss, and A.C. conductivity of samples was analyzed. Cole-Cole plots with single semicircles of different radii show the grain and grain boundaries affecting the conduction process. Moreover, Cr-substitution enhanced the microwave absorption capability. The hexaferrite sample Ba4Ni2Fe35 Cr1.0O60, with a pellet thickness of 1.81 mm, showed the highest M.W. absorption at 1.09 GHz frequency with a reflection loss (R.L.) value of −55 dB. The hexagonal-shaped morphology, high porosity, and enhanced reflection loss value suggest their use in high-frequency microwave applications.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.