Flash sintering glass–ceramic treatment of Sr-contaminated soil waste

IF 44 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Guilin Wei, Xiaoyan Shu, Jiahong Wang, Shibing Zuo, Kuan Wu, Guoliang Zhao, Fen Luo, Wenhong Han, Chen Xu, Xirui Lu
{"title":"Flash sintering glass–ceramic treatment of Sr-contaminated soil waste","authors":"Guilin Wei, Xiaoyan Shu, Jiahong Wang, Shibing Zuo, Kuan Wu, Guoliang Zhao, Fen Luo, Wenhong Han, Chen Xu, Xirui Lu","doi":"10.1016/j.ceramint.2024.10.136","DOIUrl":null,"url":null,"abstract":"Effective disposal of radioactive waste is crucial for safe development of nuclear energy. In this study, flash sintering technology is used for the first time to quickly solidify simulated Sr-contaminated soil waste. The waste can be converted into a glass–ceramic phase by heating the waste at 1100 °C for 1 min during flash sintering. The phase evolution during flash sintering as a function of density and amorphous fraction was systematically investigated. Additionally, the microstructural evolution of the matrices and the leaching behavior of simulated waste elements (e.g., Sr) were evaluated. This study explores the feasibility of using flash sintering for treating radioactive contamination waste.","PeriodicalId":48790,"journal":{"name":"The Lancet Diabetes & Endocrinology","volume":"229 1","pages":""},"PeriodicalIF":44.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Diabetes & Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.10.136","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Effective disposal of radioactive waste is crucial for safe development of nuclear energy. In this study, flash sintering technology is used for the first time to quickly solidify simulated Sr-contaminated soil waste. The waste can be converted into a glass–ceramic phase by heating the waste at 1100 °C for 1 min during flash sintering. The phase evolution during flash sintering as a function of density and amorphous fraction was systematically investigated. Additionally, the microstructural evolution of the matrices and the leaching behavior of simulated waste elements (e.g., Sr) were evaluated. This study explores the feasibility of using flash sintering for treating radioactive contamination waste.

Abstract Image

闪速烧结玻璃陶瓷处理锶污染土壤废弃物
有效处置放射性废物对核能的安全发展至关重要。本研究首次采用闪速烧结技术来快速固化模拟锶污染土壤废物。在闪速烧结过程中,通过在 1100 °C 下加热 1 分钟,可将废料转化为玻璃陶瓷相。系统研究了闪速烧结过程中相的演变与密度和无定形部分的函数关系。此外,还评估了基质的微观结构演变和模拟废物元素(如锶)的浸出行为。这项研究探讨了利用闪速烧结处理放射性污染废物的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Lancet Diabetes & Endocrinology
The Lancet Diabetes & Endocrinology ENDOCRINOLOGY & METABOLISM-
CiteScore
61.50
自引率
1.60%
发文量
371
期刊介绍: The Lancet Diabetes & Endocrinology, an independent journal with a global perspective and strong clinical focus, features original clinical research, expert reviews, news, and opinion pieces in each monthly issue. Covering topics like diabetes, obesity, nutrition, and more, the journal provides insights into clinical advances and practice-changing research worldwide. It welcomes original research advocating change or shedding light on clinical practice, as well as informative reviews on related topics, especially those with global health importance and relevance to low-income and middle-income countries. The journal publishes various content types, including Articles, Reviews, Comments, Correspondence, Health Policy, and Personal Views, along with Series and Commissions aiming to drive positive change in clinical practice and health policy in diabetes and endocrinology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信