Vasantha Krishna Kadambar, Bhoopendra Singh Kushwah, Riddhi Gupta, Denna Sunny, Himanshu Vachhani, Joel Young, Lakshmikant Bajpai
{"title":"Analytical Artifact Due to Residual HCN in Acetonitrile: Identification and Control Strategies","authors":"Vasantha Krishna Kadambar, Bhoopendra Singh Kushwah, Riddhi Gupta, Denna Sunny, Himanshu Vachhani, Joel Young, Lakshmikant Bajpai","doi":"10.1021/acs.oprd.4c00336","DOIUrl":null,"url":null,"abstract":"Mismatch in the potency from quantitative <sup>1</sup>H NMR (∼96%) and the calculated potency (∼94%) of an aldehyde intermediate led to the investigation of an unknown impurity peak observed in the chromatography. The HR-MS/MS analysis of the unknown impurity suggested it to be the cyanohydrin derivative of the corresponding aldehyde intermediate with the addition of ∼27 amu. Further investigation was performed using analogous 3-methyl iso-nicotinaldehyde as a model compound. A postcolumn hydrogen to deuterium exchange (H/D exchange) experiment further supported the proposed impurity structure as cyanohydrin. The source of HCN for the possible generation of this impurity was traced to certain brands of acetonitrile used duirng the analysis, where the presence of HCN as a contaminant was confirmed and quantified using ion chromatography. The aforementioned model compound was used to investigate the effect of other parameters like diluent composition, sample temperature and storage time, pH of the diluent, and duration of sonication, which impact the formation of such artifact impurity. Based on the results of all the experiments, mitigation strategies were proposed to avoid/control the formation of these impurities during the analytical processing such as use of methanol or HCN-free acetonitrile as a sample diluent, reduced composition of acetonitrile in the diluent, and use of freshly prepared solutions for injections to avoid longer storage time specially when certain sensitive substrates like aldehydes and ketones are analyzed. To evaluate if the formation of this impurity is limited to the compound of interest or if it is a common artifact peak for other similar compounds, various substrates involving aldehyde and ketone functional groups were analyzed under similar analytical conditions. The results indicated that aldehydes were more reactive than ketones, specifically the aldehydes containing a heterocyclic ring such as pyridine were prone to generate the cyanohydrin impurity.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00336","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Mismatch in the potency from quantitative 1H NMR (∼96%) and the calculated potency (∼94%) of an aldehyde intermediate led to the investigation of an unknown impurity peak observed in the chromatography. The HR-MS/MS analysis of the unknown impurity suggested it to be the cyanohydrin derivative of the corresponding aldehyde intermediate with the addition of ∼27 amu. Further investigation was performed using analogous 3-methyl iso-nicotinaldehyde as a model compound. A postcolumn hydrogen to deuterium exchange (H/D exchange) experiment further supported the proposed impurity structure as cyanohydrin. The source of HCN for the possible generation of this impurity was traced to certain brands of acetonitrile used duirng the analysis, where the presence of HCN as a contaminant was confirmed and quantified using ion chromatography. The aforementioned model compound was used to investigate the effect of other parameters like diluent composition, sample temperature and storage time, pH of the diluent, and duration of sonication, which impact the formation of such artifact impurity. Based on the results of all the experiments, mitigation strategies were proposed to avoid/control the formation of these impurities during the analytical processing such as use of methanol or HCN-free acetonitrile as a sample diluent, reduced composition of acetonitrile in the diluent, and use of freshly prepared solutions for injections to avoid longer storage time specially when certain sensitive substrates like aldehydes and ketones are analyzed. To evaluate if the formation of this impurity is limited to the compound of interest or if it is a common artifact peak for other similar compounds, various substrates involving aldehyde and ketone functional groups were analyzed under similar analytical conditions. The results indicated that aldehydes were more reactive than ketones, specifically the aldehydes containing a heterocyclic ring such as pyridine were prone to generate the cyanohydrin impurity.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.