A nanobelt structure as a photocatalyst assembled from molecular cobalt complexes boosts hydrogen evolution

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shuangshuang Zhou, Qiqun Liu, Xiaowei Li, Ning Wang, Cheng-Bo Li
{"title":"A nanobelt structure as a photocatalyst assembled from molecular cobalt complexes boosts hydrogen evolution","authors":"Shuangshuang Zhou, Qiqun Liu, Xiaowei Li, Ning Wang, Cheng-Bo Li","doi":"10.1039/d4ta05432f","DOIUrl":null,"url":null,"abstract":"Homogeneous molecular catalysts suffer from formidable recycling and instability challenges, preventing their further application. In this paper, we report that thiophene substituted salen metal complexes could work as heterogeneous hydrogen evolution photocatalysts in the water phase after self-assembling into a supramolecular nanobelt by highly ordered π–π stacking, which exhibited semiconductor properties. Compared to the previously reported salen metal catalysts which need photosensitizers and organic solvents, the newly assembled catalyst serves as a photocatalyst in the water phase, and its hydrogen evolution rate is 55 times higher than that of its homogeneous system and 110 times higher than that of metal salen complexes without the thiophene group, and the stability is also greatly improved. The enhanced catalytic activity is revealed to be due to the great improvement of optical absorption, charge separation and interfacial charge transfer rates.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta05432f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Homogeneous molecular catalysts suffer from formidable recycling and instability challenges, preventing their further application. In this paper, we report that thiophene substituted salen metal complexes could work as heterogeneous hydrogen evolution photocatalysts in the water phase after self-assembling into a supramolecular nanobelt by highly ordered π–π stacking, which exhibited semiconductor properties. Compared to the previously reported salen metal catalysts which need photosensitizers and organic solvents, the newly assembled catalyst serves as a photocatalyst in the water phase, and its hydrogen evolution rate is 55 times higher than that of its homogeneous system and 110 times higher than that of metal salen complexes without the thiophene group, and the stability is also greatly improved. The enhanced catalytic activity is revealed to be due to the great improvement of optical absorption, charge separation and interfacial charge transfer rates.

Abstract Image

由钴分子复合物组装而成的光催化剂纳米带结构可促进氢气进化
均相分子催化剂在回收利用和不稳定性方面存在巨大挑战,阻碍了其进一步应用。本文报道了噻吩取代的沙仑金属复合物通过高度有序的π-π堆叠自组装成超大分子纳米带,表现出半导体特性,可作为水相异相氢进化光催化剂。与之前报道的需要光敏剂和有机溶剂的沙仑金属催化剂相比,新组装的催化剂可在水相中作为光催化剂,其氢进化速率是其均相体系的 55 倍,是不含噻吩基团的金属沙仑配合物的 110 倍,稳定性也大大提高。研究发现,催化活性的提高是由于光吸收、电荷分离和界面电荷转移速率的极大改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信