Quantum state processing through controllable synthetic temporal photonic lattices

IF 32.3 1区 物理与天体物理 Q1 OPTICS
Monika Monika, Farzam Nosrati, Agnes George, Stefania Sciara, Riza Fazili, André Luiz Marques Muniz, Arstan Bisianov, Rosario Lo Franco, William J. Munro, Mario Chemnitz, Ulf Peschel, Roberto Morandotti
{"title":"Quantum state processing through controllable synthetic temporal photonic lattices","authors":"Monika Monika, Farzam Nosrati, Agnes George, Stefania Sciara, Riza Fazili, André Luiz Marques Muniz, Arstan Bisianov, Rosario Lo Franco, William J. Munro, Mario Chemnitz, Ulf Peschel, Roberto Morandotti","doi":"10.1038/s41566-024-01546-4","DOIUrl":null,"url":null,"abstract":"<p>Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies. Here we present a scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices implemented on a coupled fibre-loop system. We utilize this scheme to path-optimize quantum state operations, including the generation of two- and four-level time-bin entanglement and the respective two-photon interference. The design of the programmable temporal photonic lattice enabled us to control the dynamic of the walk, leading to an increase in the coincidence counts and quantum interference measurements without recurring to post-selection. Our results show how temporal synthetic dimensions can pave the way towards efficient quantum information processing, including quantum phase estimation, Boson sampling and the realization of topological phases of matter for high-dimensional quantum systems in a cost-effective, scalable and robust fibre-based setup.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":null,"pages":null},"PeriodicalIF":32.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01546-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies. Here we present a scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices implemented on a coupled fibre-loop system. We utilize this scheme to path-optimize quantum state operations, including the generation of two- and four-level time-bin entanglement and the respective two-photon interference. The design of the programmable temporal photonic lattice enabled us to control the dynamic of the walk, leading to an increase in the coincidence counts and quantum interference measurements without recurring to post-selection. Our results show how temporal synthetic dimensions can pave the way towards efficient quantum information processing, including quantum phase estimation, Boson sampling and the realization of topological phases of matter for high-dimensional quantum systems in a cost-effective, scalable and robust fibre-based setup.

Abstract Image

通过可控合成时态光子晶格实现量子态处理
光子平台上的量子行走是量子测量、模拟和通用计算的一个物理丰富的框架。光子电路的动态可重新配置性是控制量子行走和检索其全部运行潜力的关键。基于门控光纤环路中的时间分段编码的通用量子处理方案已经提出,但尚未得到证实,主要原因是门控效率低下。在这里,我们提出了一种可扩展的量子处理器,它基于在耦合光纤环路系统上实现的合成时序光子晶格上的时间宾包纠缠光子对的离散时间量子行走。我们利用这一方案对量子态操作进行路径优化,包括生成两级和四级时宾纠缠以及相应的双光子干涉。可编程时空光子晶格的设计使我们能够控制行走的动态,从而增加了巧合计数和量子干涉测量,而无需再进行后选择。我们的研究结果表明了时间合成维度如何为高效量子信息处理铺平道路,包括量子相位估计、玻色子采样以及在经济、可扩展和稳健的光纤设置中实现高维量子系统的物质拓扑相位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信