A. A. Al-Muntaser, S. A. Al-Ghamdi, Eman Alzahrani, A. Rajeh, G. M. Asnag, Amani M. Al-Harthi, Reem Alwafi, Abdu Saeed, Saleh Aldwais, A. Y. Yassin
{"title":"Investigation of structural and optical characteristics of PVA/crystal violet dye composites for flexible smart optoelectronic applications","authors":"A. A. Al-Muntaser, S. A. Al-Ghamdi, Eman Alzahrani, A. Rajeh, G. M. Asnag, Amani M. Al-Harthi, Reem Alwafi, Abdu Saeed, Saleh Aldwais, A. Y. Yassin","doi":"10.1007/s10965-024-04160-8","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, composite films were fabricated using the solution casting route, incorporating different weight percentages of crystal violet (CV) into polyvinyl alcohol (PVA). To examine the final composites, a series of characterization approaches were used. Fourier-transform infrared spectroscopy (FTIR) elucidated PVA/CV molecules’ physicochemical interactions. The analysis through X-ray diffraction (XRD) pointed out a decrease in the semi-crystalline nature of the polymer matrix with a rise in the CV content, thereby enhancing transport mobility and electrical conductivity. The optical properties of PVA influenced by CV dopants were systematically studied in the range of 190–1400 nm. Notably, the PVA/CV composites exhibited improved UV-blocking capabilities in the 190–380 nm range, making them appropriate for uses including UV notch filters and laser hindering filters. An increase in CV doping percentage from 0.1 to 0.8 wt% resulted in a reduction of the indirect optical bandgap of PVA from 5.16 ± 0.013 eV to 4.77 ± 0.069 eV. Additionally, the Wemple-DiDomenico model revealed significant enhancements in the optical parameters. Specifically, the dispersion energy and oscillator energy of PVA/CV composites increased from 0.91 eV and 2.01 eV to 6.83 eV and 3.25 eV, respectively, along with an increase in the lattice dielectric constant (ε<sub>L</sub>) from 1.71 to 3.47. These improvements in dispersion factors were attributed to the cross-linking of CV with the polymer matrix. Furthermore, the composite films demonstrated notable nonlinear optical properties, indicating their potential for practical applications in photonic and optoelectronic devices.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04160-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, composite films were fabricated using the solution casting route, incorporating different weight percentages of crystal violet (CV) into polyvinyl alcohol (PVA). To examine the final composites, a series of characterization approaches were used. Fourier-transform infrared spectroscopy (FTIR) elucidated PVA/CV molecules’ physicochemical interactions. The analysis through X-ray diffraction (XRD) pointed out a decrease in the semi-crystalline nature of the polymer matrix with a rise in the CV content, thereby enhancing transport mobility and electrical conductivity. The optical properties of PVA influenced by CV dopants were systematically studied in the range of 190–1400 nm. Notably, the PVA/CV composites exhibited improved UV-blocking capabilities in the 190–380 nm range, making them appropriate for uses including UV notch filters and laser hindering filters. An increase in CV doping percentage from 0.1 to 0.8 wt% resulted in a reduction of the indirect optical bandgap of PVA from 5.16 ± 0.013 eV to 4.77 ± 0.069 eV. Additionally, the Wemple-DiDomenico model revealed significant enhancements in the optical parameters. Specifically, the dispersion energy and oscillator energy of PVA/CV composites increased from 0.91 eV and 2.01 eV to 6.83 eV and 3.25 eV, respectively, along with an increase in the lattice dielectric constant (εL) from 1.71 to 3.47. These improvements in dispersion factors were attributed to the cross-linking of CV with the polymer matrix. Furthermore, the composite films demonstrated notable nonlinear optical properties, indicating their potential for practical applications in photonic and optoelectronic devices.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.