Dimension of Planar Non-conformal Attractors with Triangular Derivative Matrices

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Balázs Bárány, Antti Käenmäki
{"title":"Dimension of Planar Non-conformal Attractors with Triangular Derivative Matrices","authors":"Balázs Bárány,&nbsp;Antti Käenmäki","doi":"10.1007/s00220-024-05131-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study the dimension of the attractor and quasi-Bernoulli measures of parametrized families of iterated function systems of non-conformal and non-affine maps. We introduce a transversality condition under which, relying on a weak Ledrappier-Young formula, we show that the dimensions equal to the root of the subadditive pressure and the Lyapunov dimension, respectively, for almost every choice of parameters. We also exhibit concrete examples satisfying the transversality condition with respect to the translation parameters.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05131-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05131-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the dimension of the attractor and quasi-Bernoulli measures of parametrized families of iterated function systems of non-conformal and non-affine maps. We introduce a transversality condition under which, relying on a weak Ledrappier-Young formula, we show that the dimensions equal to the root of the subadditive pressure and the Lyapunov dimension, respectively, for almost every choice of parameters. We also exhibit concrete examples satisfying the transversality condition with respect to the translation parameters.

具有三角形衍生矩阵的平面非共形吸引子的维度
我们研究了非共形和非仿射迭代函数系统参数化族的吸引子维度和准伯努利度量。我们引入了一个横向性条件,在此条件下,依靠弱 Ledrappier-Young 公式,我们证明了在几乎所有参数选择下,维度分别等于次正压力根和 Lyapunov 维度。我们还展示了在平移参数方面满足横向性条件的具体例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信