Xiaoqun Li, Flavio S. Brigiano, Simone Pezzotti, Xinyi Liu, Wanlin Chen, Huiling Chen, Ying Li, Hui Li, Xin Lin, Wenqi Zheng, Yuchong Wang, Yue Ron Shen, Marie-Pierre Gaigeot, Wei-Tao Liu
{"title":"Unconventional structural evolution of an oxide surface in water unveiled by in situ sum-frequency spectroscopy","authors":"Xiaoqun Li, Flavio S. Brigiano, Simone Pezzotti, Xinyi Liu, Wanlin Chen, Huiling Chen, Ying Li, Hui Li, Xin Lin, Wenqi Zheng, Yuchong Wang, Yue Ron Shen, Marie-Pierre Gaigeot, Wei-Tao Liu","doi":"10.1038/s41557-024-01658-y","DOIUrl":null,"url":null,"abstract":"<p>Oxide–water interfaces host a wide range of important reactions in nature and modern industrial applications; however, accurate knowledge about these interfaces is still lacking at the molecular level owing to difficulties in accessing buried oxide surfaces. Here we report an experimental scheme enabling in situ sum-frequency vibrational spectroscopy of oxide surfaces in liquid water. Application to the silica–water interface revealed the emergence of unexpected surface reaction pathways with water. With ab initio molecular dynamics and metadynamics simulations, we uncovered a surface reconstruction, triggered by deprotonation of surface hydroxylated groups, that led to unconventional five-coordinated silicon species. The results help demystify the multimodal chemistry of aqueous silica discovered decades ago, bringing in fresh information that modifies the current understanding. Our study will provide new opportunities for future in-depth physical and chemical characterizations of other oxide–water interfaces.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"27 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01658-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxide–water interfaces host a wide range of important reactions in nature and modern industrial applications; however, accurate knowledge about these interfaces is still lacking at the molecular level owing to difficulties in accessing buried oxide surfaces. Here we report an experimental scheme enabling in situ sum-frequency vibrational spectroscopy of oxide surfaces in liquid water. Application to the silica–water interface revealed the emergence of unexpected surface reaction pathways with water. With ab initio molecular dynamics and metadynamics simulations, we uncovered a surface reconstruction, triggered by deprotonation of surface hydroxylated groups, that led to unconventional five-coordinated silicon species. The results help demystify the multimodal chemistry of aqueous silica discovered decades ago, bringing in fresh information that modifies the current understanding. Our study will provide new opportunities for future in-depth physical and chemical characterizations of other oxide–water interfaces.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.