{"title":"The adsorption and separation of tungsten and molybdenum by chitosan and chitosan-D301: Experiments and DFT theoretical calculation","authors":"Na Chen , Liwen Ma , Xiaoli Xi , Zuoren Nie","doi":"10.1016/j.apsusc.2024.161511","DOIUrl":null,"url":null,"abstract":"<div><div>The adsorption and separation of tungsten and molybdenum are important for efficient recycling of W-Mo resources, which requires green and efficient adsorbents. In this paper, Chitosan (CS)-D301 material was obtained by impregnation method and was applied to adsorb and separate W and Mo in solutions. The adsorption optimization results indicated that W was adsorbed by CS-D301, the separation factor of W/Mo increased to 26.45 compared with that of CS 21.34. The desorption efficiency was still above 94 % after five adsorption–desorption cycles. FT-IR, XPS and DFT theoretical calculations indicated that the surface group N<sup>+</sup>-R of CS-D301 showed more affinity for W, making it easier to selectively adsorb W over Mo than CS only. N was the surface-active adsorption site, and the adsorption process belonged to chemical adsorption with an adsorption energy of Eads = −957.64 kcal/mol. CS-D301 was expected to become green adsorbent for efficient separation of W and Mo to support resource recovery, protection and sustainable development.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"681 ","pages":"Article 161511"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433224022268","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The adsorption and separation of tungsten and molybdenum are important for efficient recycling of W-Mo resources, which requires green and efficient adsorbents. In this paper, Chitosan (CS)-D301 material was obtained by impregnation method and was applied to adsorb and separate W and Mo in solutions. The adsorption optimization results indicated that W was adsorbed by CS-D301, the separation factor of W/Mo increased to 26.45 compared with that of CS 21.34. The desorption efficiency was still above 94 % after five adsorption–desorption cycles. FT-IR, XPS and DFT theoretical calculations indicated that the surface group N+-R of CS-D301 showed more affinity for W, making it easier to selectively adsorb W over Mo than CS only. N was the surface-active adsorption site, and the adsorption process belonged to chemical adsorption with an adsorption energy of Eads = −957.64 kcal/mol. CS-D301 was expected to become green adsorbent for efficient separation of W and Mo to support resource recovery, protection and sustainable development.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.