C. Graves, E. Babikow, N. Ghaltakhchyan, T.Q. Ngo, C. Li, S. Wang, A. Shoji, C. Bocklage, S.T. Phillips, M. Markovetz, S.A. Frazier-Bowers, K. Divaris, M. Freire, S. Wallet, D. Wu, L.A. Jacox
{"title":"Immune Dysregulation in the Oral Cavity during Early SARS-CoV-2 Infection","authors":"C. Graves, E. Babikow, N. Ghaltakhchyan, T.Q. Ngo, C. Li, S. Wang, A. Shoji, C. Bocklage, S.T. Phillips, M. Markovetz, S.A. Frazier-Bowers, K. Divaris, M. Freire, S. Wallet, D. Wu, L.A. Jacox","doi":"10.1177/00220345241271943","DOIUrl":null,"url":null,"abstract":"Tissue-specific immune responses are critical determinants of health-maintaining homeostasis and disease-related dysbiosis. In the context of COVID-19, oral immune responses reflect local host-pathogen dynamics near the site of infection and serve as important “windows to the body,” reflecting systemic responses to the invading SARS-CoV-2 virus. This study leveraged multiplex technology to characterize the salivary SARS-CoV-2–specific immunological landscape (37 cytokines/chemokines and 11 antibodies) during early infection. Cytokine/immune profiling was performed on unstimulated cleared whole saliva collected from 227 adult SARS-CoV-2+ participants and 37 controls. Statistical analysis and modeling revealed significant differential abundance of 25 cytokines (16 downregulated, 9 upregulated). Pathway analysis demonstrated early SARS-CoV-2 infection is associated with local suppression of oral type I/III interferon and blunted natural killer–/T-cell responses, reflecting a potential novel immune-evasion strategy enabling infection. This virus-associated immune suppression occurred concomitantly with significant upregulation of proinflammatory pathways including marked increases in the acute phase proteins pentraxin-3 and chitinase-3-like-1. Irrespective of SARS-CoV-2 infection, prior vaccination was associated with increased total α-SARS-CoV-2-spike (trimer), -S1 protein, -RBD, and -nucleocapsid salivary antibodies, highlighting the importance of COVID-19 vaccination in eliciting mucosal responses. Altogether, our findings highlight saliva as a stable and accessible biofluid for monitoring host responses to SARS-CoV-2 over time and suggest that oral-mucosal immune dysregulation is a hallmark of early SARS-CoV-2 infection, with possible implications for viral evasion mechanisms.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":"9 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345241271943","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue-specific immune responses are critical determinants of health-maintaining homeostasis and disease-related dysbiosis. In the context of COVID-19, oral immune responses reflect local host-pathogen dynamics near the site of infection and serve as important “windows to the body,” reflecting systemic responses to the invading SARS-CoV-2 virus. This study leveraged multiplex technology to characterize the salivary SARS-CoV-2–specific immunological landscape (37 cytokines/chemokines and 11 antibodies) during early infection. Cytokine/immune profiling was performed on unstimulated cleared whole saliva collected from 227 adult SARS-CoV-2+ participants and 37 controls. Statistical analysis and modeling revealed significant differential abundance of 25 cytokines (16 downregulated, 9 upregulated). Pathway analysis demonstrated early SARS-CoV-2 infection is associated with local suppression of oral type I/III interferon and blunted natural killer–/T-cell responses, reflecting a potential novel immune-evasion strategy enabling infection. This virus-associated immune suppression occurred concomitantly with significant upregulation of proinflammatory pathways including marked increases in the acute phase proteins pentraxin-3 and chitinase-3-like-1. Irrespective of SARS-CoV-2 infection, prior vaccination was associated with increased total α-SARS-CoV-2-spike (trimer), -S1 protein, -RBD, and -nucleocapsid salivary antibodies, highlighting the importance of COVID-19 vaccination in eliciting mucosal responses. Altogether, our findings highlight saliva as a stable and accessible biofluid for monitoring host responses to SARS-CoV-2 over time and suggest that oral-mucosal immune dysregulation is a hallmark of early SARS-CoV-2 infection, with possible implications for viral evasion mechanisms.
期刊介绍:
The Journal of Dental Research (JDR) is a peer-reviewed scientific journal committed to sharing new knowledge and information on all sciences related to dentistry and the oral cavity, covering health and disease. With monthly publications, JDR ensures timely communication of the latest research to the oral and dental community.