CFD study of heat transfer in power-law fluids over a corrugated cylinder

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-06-30 DOI:10.1002/htj.23108
Sonam Gopaldasji Rajpuriya, Sachin Kumar Dhiman, Radhe Shyam
{"title":"CFD study of heat transfer in power-law fluids over a corrugated cylinder","authors":"Sonam Gopaldasji Rajpuriya,&nbsp;Sachin Kumar Dhiman,&nbsp;Radhe Shyam","doi":"10.1002/htj.23108","DOIUrl":null,"url":null,"abstract":"<p>The computational study of power-law fluid flow, along with heat transfer attributes over a corrugated heated cylinder, is explored using ANSYS FLUENT (Version 18.0). Fluids power-law indices fall in the range of 0.25 ≤ <i>n</i> ≤ 1.5, and the Reynolds number spans in the range of 1 ≤ <i>Re</i><sub><i>N</i></sub> ≤ 40. The flow is two-dimensional, steady, and laminar. A wide range of Prandtl numbers (0.7 ≤ <i>Pr</i><sub><i>N</i></sub> ≤ 500) is used to cover the most industrially applied fluids. A domain height of 135<i>D</i><sub><i>h</i></sub> is used. A grid with the smallest element size of 0.04 m and 135,914 nodes was used. Flow and heat transfer attributes were studied using streamlines, isotherms, and local and average Nusselt numbers. The average Nusselt number increases with <i>Re</i><sub><i>N</i></sub> and/or <i>Pr</i><sub><i>N</i></sub>. The heat transfer rate is significantly lower in dilatant fluids and higher in pseudoplastic fluids than in Newtonian fluids. The onset of wake formation behind the cylinder takes place at <i>Re</i><sub><i>N</i></sub> = 10. The increase in Reynolds number (<i>Re</i><sub><i>N</i></sub>) and power-law index (<i>n</i>) causes an increase in wake size. Heat transfer increases with the Reynolds number and/or decrease in the power-law index. The enhancement in heat transfer due to corrugation is studied in detail in terms of average Nusselt number, which has not been studied for arched corrugated cylinder, even for Newtonian fluids in low Reynolds number range. A Nusselt number correlation is also developed for the given ranges of conditions.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 7","pages":"3880-3901"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The computational study of power-law fluid flow, along with heat transfer attributes over a corrugated heated cylinder, is explored using ANSYS FLUENT (Version 18.0). Fluids power-law indices fall in the range of 0.25 ≤ n ≤ 1.5, and the Reynolds number spans in the range of 1 ≤ ReN ≤ 40. The flow is two-dimensional, steady, and laminar. A wide range of Prandtl numbers (0.7 ≤ PrN ≤ 500) is used to cover the most industrially applied fluids. A domain height of 135Dh is used. A grid with the smallest element size of 0.04 m and 135,914 nodes was used. Flow and heat transfer attributes were studied using streamlines, isotherms, and local and average Nusselt numbers. The average Nusselt number increases with ReN and/or PrN. The heat transfer rate is significantly lower in dilatant fluids and higher in pseudoplastic fluids than in Newtonian fluids. The onset of wake formation behind the cylinder takes place at ReN = 10. The increase in Reynolds number (ReN) and power-law index (n) causes an increase in wake size. Heat transfer increases with the Reynolds number and/or decrease in the power-law index. The enhancement in heat transfer due to corrugation is studied in detail in terms of average Nusselt number, which has not been studied for arched corrugated cylinder, even for Newtonian fluids in low Reynolds number range. A Nusselt number correlation is also developed for the given ranges of conditions.

波纹圆柱体上幂律流体传热的 CFD 研究
ANSYS FLUENT(18.0 版)对波纹加热圆柱体上的幂律流体流动和传热属性进行了计算研究。流体幂律指数范围为 0.25 ≤ n ≤ 1.5,雷诺数范围为 1 ≤ ReN ≤ 40。流动为二维、稳定和层流。普朗特数的范围很广(0.7 ≤ PrN ≤ 500),涵盖了大多数工业应用流体。使用的域高度为 135Dh。网格的最小元素尺寸为 0.04 m,节点数为 135,914 个。使用流线、等温线以及局部和平均努塞尔特数研究了流动和传热属性。平均努塞尔特数随 ReN 和/或 PrN 的增加而增加。与牛顿流体相比,膨胀流体的传热速率明显较低,而假塑性流体的传热速率较高。在 ReN = 10 时,圆柱体后方开始形成尾流。雷诺数 (ReN) 和幂律指数 (n) 的增加会导致唤醒大小的增加。传热量随雷诺数和/或幂律指数的降低而增加。我们从平均努塞尔特数的角度详细研究了波纹对传热的增强作用,而对于弧形波纹圆柱体,即使是低雷诺数范围内的牛顿流体,我们也没有进行过这方面的研究。还针对给定的条件范围开发了努塞尔特数相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信