{"title":"Plastic damage fracture characteristics and constitutive modeling of rocks under uniaxial compression considering crack geometry","authors":"Hongtao Xu, Tingye Qi, Guorui Feng, Tian Qiu, Haochen Wang, Linfei Wang, Zhicheng Zhang, Siyuan Cheng","doi":"10.1111/ffe.14425","DOIUrl":null,"url":null,"abstract":"<p>The study of damage and failure in fractured rock masses is crucial. This study employs the representative volume element (RVE) method to develop a microscale rock model. The model simulates the propagation and rupture of fractures by integrating factors including actual mineralogical composition, the Weibull distribution function, the Mohr–Coulomb damage criterion, and strain softening. Results indicate that fractures reduce the uniaxial compressive strength of the rock and that peak strength is significantly correlated with crack geometries. Plastic damage in rocks was categorized into three stages: elastic, rapid growth, and postpeak softening. A logistic growth model describes the plastic volume change curves for rocks with various fracture geometries, establishing the relationship between plastic damage volume and damage variables. Constitutive models for rocks with varying fracture geometries under uniaxial compression were formulated. The accuracy and applicability of these models were validated, providing a theoretical basis for rock engineering applications.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 11","pages":"4196-4213"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14425","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The study of damage and failure in fractured rock masses is crucial. This study employs the representative volume element (RVE) method to develop a microscale rock model. The model simulates the propagation and rupture of fractures by integrating factors including actual mineralogical composition, the Weibull distribution function, the Mohr–Coulomb damage criterion, and strain softening. Results indicate that fractures reduce the uniaxial compressive strength of the rock and that peak strength is significantly correlated with crack geometries. Plastic damage in rocks was categorized into three stages: elastic, rapid growth, and postpeak softening. A logistic growth model describes the plastic volume change curves for rocks with various fracture geometries, establishing the relationship between plastic damage volume and damage variables. Constitutive models for rocks with varying fracture geometries under uniaxial compression were formulated. The accuracy and applicability of these models were validated, providing a theoretical basis for rock engineering applications.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.