F ( Q ) $F(Q)$ Gravity with Gauss–Bonnet Corrections: From Early-Time Inflation to Late-Time Acceleration

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Shin'ichi Nojiri, Sergei D. Odintsov
{"title":"F\n (\n Q\n )\n \n $F(Q)$\n Gravity with Gauss–Bonnet Corrections: From Early-Time Inflation to Late-Time Acceleration","authors":"Shin'ichi Nojiri,&nbsp;Sergei D. Odintsov","doi":"10.1002/prop.202400113","DOIUrl":null,"url":null,"abstract":"<p>The authors show that in the <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> gravity with a non-metricity scalar <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>$Q$</annotation>\n </semantics></math>, the curvatures in Einstein's gravity, that is, the Riemann curvature constructed from the standard Levi-Civita connection, could not be excluded or naturally appear. The first observation is that even in <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> gravity, the conservation of the matter energy-momentum tensor is not described by the covariant derivatives in the non-metricity gravity but that is given by the Levi-Civita connection. The commutator of the covariant derivatives in Einstein's gravity inevitably induces the Riemann curvature. There is no symmetry nor principle which prohibits the Riemann curvature in non-metricity gravity. Based on this observation, the authors propose and investigate <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mfenced>\n <mi>Q</mi>\n <mo>,</mo>\n <mi>G</mi>\n </mfenced>\n </mrow>\n <annotation>$f\\left(Q, \\mathcal {G} \\right)$</annotation>\n </semantics></math> gravity with the Gauss–Bonnet invariant <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math> and its generalizations. The authors also show how <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mfenced>\n <mi>Q</mi>\n <mo>,</mo>\n <mi>G</mi>\n </mfenced>\n </mrow>\n <annotation>$f\\left(Q, \\mathcal {G} \\right)$</annotation>\n </semantics></math> models realizing any given the Friedmann–Lemaître–Robertson– Walker (FLRW) spacetime can be reconstructed. The reconstruction formalism to cosmology is applied. Explicitly, the gravity models which realize slow roll or constant roll inflation, dark energy epoch as well as the unification of the inflation and dark energy are found. The dynamical autonomous system and the gravitational wave in the theory under investigation are discussed. It is found the condition that the de Sitter spacetime becomes the (stable) fixed point of the system.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 9-10","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202400113","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The authors show that in the f ( Q ) $f(Q)$ gravity with a non-metricity scalar Q $Q$ , the curvatures in Einstein's gravity, that is, the Riemann curvature constructed from the standard Levi-Civita connection, could not be excluded or naturally appear. The first observation is that even in f ( Q ) $f(Q)$ gravity, the conservation of the matter energy-momentum tensor is not described by the covariant derivatives in the non-metricity gravity but that is given by the Levi-Civita connection. The commutator of the covariant derivatives in Einstein's gravity inevitably induces the Riemann curvature. There is no symmetry nor principle which prohibits the Riemann curvature in non-metricity gravity. Based on this observation, the authors propose and investigate f Q , G $f\left(Q, \mathcal {G} \right)$ gravity with the Gauss–Bonnet invariant G $\mathcal {G}$ and its generalizations. The authors also show how f Q , G $f\left(Q, \mathcal {G} \right)$ models realizing any given the Friedmann–Lemaître–Robertson– Walker (FLRW) spacetime can be reconstructed. The reconstruction formalism to cosmology is applied. Explicitly, the gravity models which realize slow roll or constant roll inflation, dark energy epoch as well as the unification of the inflation and dark energy are found. The dynamical autonomous system and the gravitational wave in the theory under investigation are discussed. It is found the condition that the de Sitter spacetime becomes the (stable) fixed point of the system.

F ( Q ) $F(Q)$ 重力与高斯-波内特修正:从早期膨胀到晚期加速
作者指出,在具有非度量标量 Q $Q$ 的 f ( Q ) $f(Q)$引力中,爱因斯坦引力中的曲率,即由标准 Levi-Civita 连接构建的黎曼曲率,无法被排除或自然出现。第一个观察结果是,即使在 f ( Q ) $f(Q)$引力中,物质能量-动量张量的守恒也不是由非度量引力中的协变导数描述的,而是由 Levi-Civita 连接给出的。爱因斯坦引力中的协变导数换元不可避免地会引起黎曼曲率。在非度量引力中不存在禁止黎曼曲率的对称性或原则。基于这一观察,作者提出并研究了 f Q , G $f\left(Q, \mathcal {G} \right)$ 引力与高斯-波奈不变式 G $\mathcal {G}$ 及其广义。作者还展示了如何重构 f Q , G $f\left(Q, \mathcal {G} \right)$ 模型,实现任何给定的弗里德曼-勒梅特尔-罗伯逊-沃克(FLRW)时空。重构形式主义应用于宇宙学。明确地找到了实现慢滚或恒滚膨胀、暗能量纪元以及膨胀与暗能量统一的引力模型。讨论了所研究理论中的动力学自主系统和引力波。发现了德西特时空成为系统(稳定)定点的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信