Colouring versus density in integers and Hales–Jewett cubes

IF 1 2区 数学 Q1 MATHEMATICS
Christian Reiher, Vojtěch Rödl, Marcelo Sales
{"title":"Colouring versus density in integers and Hales–Jewett cubes","authors":"Christian Reiher,&nbsp;Vojtěch Rödl,&nbsp;Marcelo Sales","doi":"10.1112/jlms.12987","DOIUrl":null,"url":null,"abstract":"<p>We construct for every integer <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$k\\geqslant 3$</annotation>\n </semantics></math> and every real <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mfrac>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mi>k</mi>\n </mfrac>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mu \\in (0, \\frac{k-1}{k})$</annotation>\n </semantics></math> a set of integers <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>=</mo>\n <mi>X</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$X=X(k, \\mu)$</annotation>\n </semantics></math> which, when coloured with finitely many colours, contains a monochromatic <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-term arithmetic progression, whilst every finite <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mo>⊆</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$Y\\subseteq X$</annotation>\n </semantics></math> has a subset <span></span><math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>⊆</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$Z\\subseteq Y$</annotation>\n </semantics></math> of size <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>Z</mi>\n <mo>|</mo>\n <mo>⩾</mo>\n <mi>μ</mi>\n <mo>|</mo>\n <mi>Y</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|Z|\\geqslant \\mu |Y|$</annotation>\n </semantics></math> that is free of arithmetic progressions of length <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. This answers a question of Erdős, Nešetřil and the second author. Moreover, we obtain an analogous multidimensional statement and a Hales–Jewett version of this result.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12987","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12987","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct for every integer k 3 $k\geqslant 3$ and every real μ ( 0 , k 1 k ) $\mu \in (0, \frac{k-1}{k})$ a set of integers X = X ( k , μ ) $X=X(k, \mu)$ which, when coloured with finitely many colours, contains a monochromatic k $k$ -term arithmetic progression, whilst every finite Y X $Y\subseteq X$ has a subset Z Y $Z\subseteq Y$ of size | Z | μ | Y | $|Z|\geqslant \mu |Y|$ that is free of arithmetic progressions of length k $k$ . This answers a question of Erdős, Nešetřil and the second author. Moreover, we obtain an analogous multidimensional statement and a Hales–Jewett version of this result.

Abstract Image

整数和黑尔斯-祖耶特立方体中的着色与密度关系
We construct for every integer k ⩾ 3 $k\geqslant 3$ and every real μ ∈ ( 0 , k − 1 k ) $\mu \in (0, \frac{k-1}{k})$ a set of integers X = X ( k , μ ) $X=X(k, \mu)$ which, when coloured with finitely many colours, contains a monochromatic k $k$ -term arithmetic progression, whilst every finite Y ⊆ X $Y\subseteq X$ has a subset Z ⊆ Y $Z\subseteq Y$ of size | Z | ⩾ μ | Y | $|Z|\geqslant \mu |Y|$ that is free of arithmetic progressions of length k $k$ .这回答了厄尔多斯、奈舍特日尔和第二位作者的一个问题。此外,我们还得到了一个类似的多维声明以及这一结果的黑尔斯-杰伊特版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信