First-order asymptotic perturbation theory for extensions of symmetric operators

IF 1 2区 数学 Q1 MATHEMATICS
Yuri Latushkin, Selim Sukhtaiev
{"title":"First-order asymptotic perturbation theory for extensions of symmetric operators","authors":"Yuri Latushkin,&nbsp;Selim Sukhtaiev","doi":"10.1112/jlms.13005","DOIUrl":null,"url":null,"abstract":"<p>This work offers a new prospective on asymptotic perturbation theory for varying self-adjoint extensions of symmetric operators. Employing symplectic formulation of self-adjointness, we use a version of resolvent difference identity for two arbitrary self-adjoint extensions that facilitates asymptotic analysis of resolvent operators via first-order expansion for the family of Lagrangian planes associated with perturbed operators. Specifically, we derive a Riccati-type differential equation and the first-order asymptotic expansion for resolvents of self-adjoint extensions determined by smooth one-parameter families of Lagrangian planes. This asymptotic perturbation theory yields a symplectic version of the abstract Kato selection theorem and Hadamard–Rellich-type variational formula for slopes of multiple eigenvalue curves bifurcating from an eigenvalue of the unperturbed operator. The latter, in turn, gives a general infinitesimal version of the celebrated formula equating the spectral flow of a path of self-adjoint extensions and the Maslov index of the corresponding path of Lagrangian planes. Applications are given to quantum graphs, periodic Kronig–Penney model, elliptic second-order partial differential operators with Robin boundary conditions, and physically relevant heat equations with thermal conductivity.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13005","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work offers a new prospective on asymptotic perturbation theory for varying self-adjoint extensions of symmetric operators. Employing symplectic formulation of self-adjointness, we use a version of resolvent difference identity for two arbitrary self-adjoint extensions that facilitates asymptotic analysis of resolvent operators via first-order expansion for the family of Lagrangian planes associated with perturbed operators. Specifically, we derive a Riccati-type differential equation and the first-order asymptotic expansion for resolvents of self-adjoint extensions determined by smooth one-parameter families of Lagrangian planes. This asymptotic perturbation theory yields a symplectic version of the abstract Kato selection theorem and Hadamard–Rellich-type variational formula for slopes of multiple eigenvalue curves bifurcating from an eigenvalue of the unperturbed operator. The latter, in turn, gives a general infinitesimal version of the celebrated formula equating the spectral flow of a path of self-adjoint extensions and the Maslov index of the corresponding path of Lagrangian planes. Applications are given to quantum graphs, periodic Kronig–Penney model, elliptic second-order partial differential operators with Robin boundary conditions, and physically relevant heat equations with thermal conductivity.

对称算子扩展的一阶渐近扰动理论
这项研究为对称算子的变化自相关扩展的渐近扰动理论提供了一个新的视角。我们采用自相接的交点表述,使用了两个任意自相接扩展的解析差分特性版本,通过与扰动算子相关的拉格朗日平面族的一阶展开,促进了解析算子的渐近分析。具体来说,我们推导了一个里卡提式微分方程,以及由光滑的一参数拉格朗日平面族决定的自相关扩展的解算子的一阶渐近展开。这种渐近扰动理论产生了抽象加藤选择定理的交映体版本,以及从未受扰算子的一个特征值分岔出来的多特征值曲线斜率的哈达玛-雷利克式变分公式。后者反过来给出了著名公式的一般无穷小版本,该公式等同于自相关扩展路径的谱流和相应拉格朗日平面路径的马斯洛夫指数。该公式应用于量子图、周期性克罗尼格-彭尼模型、具有罗宾边界条件的椭圆二阶偏微分算子以及具有热传导性的物理相关热方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信