Alysha Williamson, Khashayar Khoshmanesh, Elena Pirogova, Peiqi Yang, Finn Snow, Richard Williams, Anita Quigley, Rob M. I. Kapsa
{"title":"Bioreactors: A Regenerative Approach to Skeletal Muscle Engineering for Repair and Replacement","authors":"Alysha Williamson, Khashayar Khoshmanesh, Elena Pirogova, Peiqi Yang, Finn Snow, Richard Williams, Anita Quigley, Rob M. I. Kapsa","doi":"10.1002/anbr.202400030","DOIUrl":null,"url":null,"abstract":"<p>\nEngineering skeletal muscle tissue is crucial for the repair and replacement of damaged or dysfunctional muscle. Despite numerous studies emphasizing the significance of skeletal muscle engineering, challenges persist in effectively replacing or repairing large muscle sections in vivo. Bioreactors that facilitate the rapid expansion of muscle precursor cells present a promising solution for addressing extensive muscle loss. Specifically, bioreactors that mimic the native microenvironment of muscle tissue can induce biomimetic stimuli, selectively promoting the expansion of muscle precursors with optimal myo-regenerative potential. In this review, the advancements made in utilizing bioreactors to enhance the myo-regenerative phenotype of cells for skeletal muscle engineering are highlighted.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering skeletal muscle tissue is crucial for the repair and replacement of damaged or dysfunctional muscle. Despite numerous studies emphasizing the significance of skeletal muscle engineering, challenges persist in effectively replacing or repairing large muscle sections in vivo. Bioreactors that facilitate the rapid expansion of muscle precursor cells present a promising solution for addressing extensive muscle loss. Specifically, bioreactors that mimic the native microenvironment of muscle tissue can induce biomimetic stimuli, selectively promoting the expansion of muscle precursors with optimal myo-regenerative potential. In this review, the advancements made in utilizing bioreactors to enhance the myo-regenerative phenotype of cells for skeletal muscle engineering are highlighted.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.