Energy-Water Asynchrony Principally Determines Water Available for Runoff From Snowmelt in Continental Montane Forests

IF 3.2 3区 地球科学 Q1 Environmental Science
Ryan William Webb, John F. Knowles, Alex Fox, Alex Fabricus, Timothy Corrie, Kori Mooney, Jocelyn Gallais, Nana Afua Gyau Frimpong, Christopher Akuka Akurugu, Greg Barron-Gafford, Peter D. Blanken, Sean P. Burns, John Frank, Marcy Litvak
{"title":"Energy-Water Asynchrony Principally Determines Water Available for Runoff From Snowmelt in Continental Montane Forests","authors":"Ryan William Webb,&nbsp;John F. Knowles,&nbsp;Alex Fox,&nbsp;Alex Fabricus,&nbsp;Timothy Corrie,&nbsp;Kori Mooney,&nbsp;Jocelyn Gallais,&nbsp;Nana Afua Gyau Frimpong,&nbsp;Christopher Akuka Akurugu,&nbsp;Greg Barron-Gafford,&nbsp;Peter D. Blanken,&nbsp;Sean P. Burns,&nbsp;John Frank,&nbsp;Marcy Litvak","doi":"10.1002/hyp.15297","DOIUrl":null,"url":null,"abstract":"<p>Changes in the volume, rate, and timing of the snowmelt water pulse have profound implications for seasonal soil moisture, evapotranspiration (ET), groundwater recharge, and downstream water availability, especially in the context of climate change. Here, we present an empirical analysis of water available for runoff using five eddy covariance towers located in continental montane forests across a regional gradient of snow depth, precipitation seasonality, and aridity. We specifically investigated how energy-water asynchrony (i.e., snowmelt timing relative to atmospheric demand), surface water input intensity (rain and snowmelt), and observed winter ET (winter AET) impact multiple water balance metrics that determine water available for runoff (WAfR). Overall, we found that WAfR had the strongest relationship with energy-water asynchrony (adjusted <i>r</i><sup>2</sup> = 0.52) and that winter AET was correlated to total water year evapotranspiration but not to other water balance metrics. Stepwise regression analysis demonstrated that none of the tested mechanisms were strongly related to the Budyko-type runoff anomaly (highest adjusted <i>r</i><sup>2</sup> = 0.21). We, therefore, conclude that WAfR from continental montane forests is most sensitive to the degree of energy-water asynchrony that occurs. The results of this empirical study identify the physical mechanisms driving variability of WAfR in continental montane forests and are thus broadly relevant to the hydrologic management and modelling communities.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15297","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15297","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in the volume, rate, and timing of the snowmelt water pulse have profound implications for seasonal soil moisture, evapotranspiration (ET), groundwater recharge, and downstream water availability, especially in the context of climate change. Here, we present an empirical analysis of water available for runoff using five eddy covariance towers located in continental montane forests across a regional gradient of snow depth, precipitation seasonality, and aridity. We specifically investigated how energy-water asynchrony (i.e., snowmelt timing relative to atmospheric demand), surface water input intensity (rain and snowmelt), and observed winter ET (winter AET) impact multiple water balance metrics that determine water available for runoff (WAfR). Overall, we found that WAfR had the strongest relationship with energy-water asynchrony (adjusted r2 = 0.52) and that winter AET was correlated to total water year evapotranspiration but not to other water balance metrics. Stepwise regression analysis demonstrated that none of the tested mechanisms were strongly related to the Budyko-type runoff anomaly (highest adjusted r2 = 0.21). We, therefore, conclude that WAfR from continental montane forests is most sensitive to the degree of energy-water asynchrony that occurs. The results of this empirical study identify the physical mechanisms driving variability of WAfR in continental montane forests and are thus broadly relevant to the hydrologic management and modelling communities.

Abstract Image

能水不同步主要决定了大陆山地森林融雪的径流可用水量
融雪水脉冲的水量、速率和时间的变化对季节性土壤湿度、蒸散(ET)、地下水补给和下游可用水量有着深远的影响,尤其是在气候变化的背景下。在此,我们利用位于大陆山地森林的五个涡度协方差塔,跨越积雪深度、降水季节性和干旱程度的区域梯度,对径流可用水量进行了实证分析。我们特别研究了能量-水分不同步(即相对于大气需求的融雪时间)、地表水输入强度(降雨和融雪)以及观测到的冬季蒸散发(冬季蒸散发)如何影响决定径流可用水量(WAfR)的多个水平衡指标。总体而言,我们发现径流可用水量与能量-水量不同步关系最密切(调整后 r2 = 0.52),冬季蒸散发与水年总蒸散发相关,但与其他水平衡指标无关。逐步回归分析表明,所测试的机制都与布迪科型径流异常没有密切关系(调整后的最高 r2 = 0.21)。因此,我们得出结论认为,大陆山地森林的 WAfR 对发生的能量-水分不同步程度最为敏感。这项实证研究的结果确定了驱动大陆山地森林 WAfR 变化的物理机制,因此与水文管理和建模界具有广泛的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信