Least energy solutions for a class of ( p 1 , p 2 ) $(p_{1}, p_{2})$ -Kirchhoff-type problems in R N $\mathbb {R}^{N}$ with general nonlinearities

IF 1 2区 数学 Q1 MATHEMATICS
Vincenzo Ambrosio
{"title":"Least energy solutions for a class of \n \n \n (\n \n p\n 1\n \n ,\n \n p\n 2\n \n )\n \n $(p_{1}, p_{2})$\n -Kirchhoff-type problems in \n \n \n R\n N\n \n $\\mathbb {R}^{N}$\n with general nonlinearities","authors":"Vincenzo Ambrosio","doi":"10.1112/jlms.13004","DOIUrl":null,"url":null,"abstract":"<p>We examine the following <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>p</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>p</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(p_{1}, p_{2})$</annotation>\n </semantics></math>-Kirchhoff-type problem:\n\n </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13004","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the following ( p 1 , p 2 ) $(p_{1}, p_{2})$ -Kirchhoff-type problem:

具有一般非线性的 R N $\mathbb {R}^{N}$ 中一类 ( p 1 , p 2 ) $(p_{1}, p_{2})$ -Kirchhoff-type 问题的最小能量解法
我们将研究以下 ( p 1 , p 2 ) $(p_{1}, p_{2})$ 基尔霍夫型问题:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信