Hiroyuki Kusaka, Ryosaku Ikeda, Takuto Sato, Satoru Iizuka, Taisuke Boku
{"title":"Development of a Multi-Scale Meteorological Large-Eddy Simulation Model for Urban Thermal Environmental Studies: The “City-LES” Model Version 2.0","authors":"Hiroyuki Kusaka, Ryosaku Ikeda, Takuto Sato, Satoru Iizuka, Taisuke Boku","doi":"10.1029/2024MS004367","DOIUrl":null,"url":null,"abstract":"<p>To bridge the gaps between meteorological large-eddy simulation (LES) models and computational fluid dynamics (CFD) models for microscale urban climate simulations, the present study has developed a meteorological LES model for urban areas. This model simulates urban climates across both mesoscale (city scale) and microscale (city-block scale). The paper offers an overview of this LES model, which distinguishes itself from standard numerical weather prediction models by resolving buildings and trees at the microscale simulations. It also differs from standard CFD models by accounting for atmospheric stratification and physical processes. Noteworthy features of this model include: (a) the calculation of long- and short-wave radiations in three dimensions, incorporating multiple reflections within urban canopy layers using the radiosity method, and accounting for building and tree shadows in the simulations; (b) the provision of various heat stress indices (Universal Thermal Climate Index, Wet Bulb Globe Temperature, MRT, THI); (c) the assessment of the efficacy of heat stress mitigation measures such as dry-mist spraying, roadside trees, cool pavements, and green/cool roofs strategies; (d) the capability to run on supercomputers, with the code parallelized in a three-dimensional manner, and the model can also run on a graphics processing unit cluster. Following the introduction of this model, the study confirms its basic performance through various numerical experiments, including simulations of thermals in the convective boundary layer, coherent structure of turbulence over urban canopy, and thermal environment and heat stress indices in urban districts. The model developed in this study is intended to serve as a community tool for addressing both fundamental and applied studies in urban climatology.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004367","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004367","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To bridge the gaps between meteorological large-eddy simulation (LES) models and computational fluid dynamics (CFD) models for microscale urban climate simulations, the present study has developed a meteorological LES model for urban areas. This model simulates urban climates across both mesoscale (city scale) and microscale (city-block scale). The paper offers an overview of this LES model, which distinguishes itself from standard numerical weather prediction models by resolving buildings and trees at the microscale simulations. It also differs from standard CFD models by accounting for atmospheric stratification and physical processes. Noteworthy features of this model include: (a) the calculation of long- and short-wave radiations in three dimensions, incorporating multiple reflections within urban canopy layers using the radiosity method, and accounting for building and tree shadows in the simulations; (b) the provision of various heat stress indices (Universal Thermal Climate Index, Wet Bulb Globe Temperature, MRT, THI); (c) the assessment of the efficacy of heat stress mitigation measures such as dry-mist spraying, roadside trees, cool pavements, and green/cool roofs strategies; (d) the capability to run on supercomputers, with the code parallelized in a three-dimensional manner, and the model can also run on a graphics processing unit cluster. Following the introduction of this model, the study confirms its basic performance through various numerical experiments, including simulations of thermals in the convective boundary layer, coherent structure of turbulence over urban canopy, and thermal environment and heat stress indices in urban districts. The model developed in this study is intended to serve as a community tool for addressing both fundamental and applied studies in urban climatology.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.