Sergio E. Moya, Raquel Ruiz Hernández, Paula C. Angelomé
{"title":"Degradation of Mesoporous Silica Materials in Biological Milieu: The Gateway for Therapeutic Applications","authors":"Sergio E. Moya, Raquel Ruiz Hernández, Paula C. Angelomé","doi":"10.1002/anbr.202400005","DOIUrl":null,"url":null,"abstract":"<p>Since early developments in the field of mesoporous materials, mesoporous silica has attracted large interest in drug delivery, as they display an ordered array of pores with diameters ranging from 2 to 50 nm, which can be loaded with drugs. Mesoporous silica dissolves at physiological pH, triggering the release of loaded drugs. Several studies have focused on determining the key factors that determine the biodistribution, biocompatibility, and toxicity both in vitro or in vivo. However, in vivo studies focused on the degradation of mesoporous silica materials are very scarce, despite its relevance for drug release. In this perspective, recent works addressing mesoporous materials degradation in the context of drug delivery are discussed, first from a physicochemical point of view, and secondly in in vivo settings, in animal models that are the closest conditions to the encountered when the mesoporous materials are administered to humans. Finally, further discussion about the future directions in the design of mesoporous nanomaterials for therapy and for the study of their biological fate are presented.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since early developments in the field of mesoporous materials, mesoporous silica has attracted large interest in drug delivery, as they display an ordered array of pores with diameters ranging from 2 to 50 nm, which can be loaded with drugs. Mesoporous silica dissolves at physiological pH, triggering the release of loaded drugs. Several studies have focused on determining the key factors that determine the biodistribution, biocompatibility, and toxicity both in vitro or in vivo. However, in vivo studies focused on the degradation of mesoporous silica materials are very scarce, despite its relevance for drug release. In this perspective, recent works addressing mesoporous materials degradation in the context of drug delivery are discussed, first from a physicochemical point of view, and secondly in in vivo settings, in animal models that are the closest conditions to the encountered when the mesoporous materials are administered to humans. Finally, further discussion about the future directions in the design of mesoporous nanomaterials for therapy and for the study of their biological fate are presented.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.