Boming Zhang, Herbert Iu, Xinan Zhang, Tat Kei Chau
{"title":"A NoisyNet deep reinforcement learning method for frequency regulation in power systems","authors":"Boming Zhang, Herbert Iu, Xinan Zhang, Tat Kei Chau","doi":"10.1049/gtd2.13250","DOIUrl":null,"url":null,"abstract":"<p>This study thoroughly investigates the NoisyNet Deep Deterministic Policy Gradient (DDPG) for frequency regulation. Compared with the conventional DDPG method, the suggested method can provide several benefits. First, the parameter noise will explore different strategies more thoroughly and can potentially discover better policies that it might miss if only action noise were used, which helps the actor achieve an optimal control strategy, resulting in enhanced dynamic response. Second, by employing the delayed policy update policy work with the proposed framework, the training process exhibits faster convergence, enabling rapid adaptation to changing disturbances. To substantiate its efficacy, the scheme is subjected to simulation tests on both an IEEE three-area power system, an IEEE 39 bus power system, and an IEEE 68 bus system. A comprehensive performance comparison was performed against other DDPG-based methods to validate and evaluate the performance of the proposed LFC scheme.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 19","pages":"3042-3051"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13250","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13250","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study thoroughly investigates the NoisyNet Deep Deterministic Policy Gradient (DDPG) for frequency regulation. Compared with the conventional DDPG method, the suggested method can provide several benefits. First, the parameter noise will explore different strategies more thoroughly and can potentially discover better policies that it might miss if only action noise were used, which helps the actor achieve an optimal control strategy, resulting in enhanced dynamic response. Second, by employing the delayed policy update policy work with the proposed framework, the training process exhibits faster convergence, enabling rapid adaptation to changing disturbances. To substantiate its efficacy, the scheme is subjected to simulation tests on both an IEEE three-area power system, an IEEE 39 bus power system, and an IEEE 68 bus system. A comprehensive performance comparison was performed against other DDPG-based methods to validate and evaluate the performance of the proposed LFC scheme.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf