{"title":"Series arc-fault diagnosis using convolutional neural network via generalized S-transform and power spectral density","authors":"Penghe Zhang, Yiwei Qin","doi":"10.1049/gtd2.13193","DOIUrl":null,"url":null,"abstract":"<p>It is difficult to identify an arc fault accurately when the loads on the user side are more complicated, which hinders the development of low-voltage monitoring and pre-warning inspection. This study acquired a series of arc-fault signals according to IEC 62606. The main time-frequency features were strengthened with high efficiency by applying the generalized S-transform to them with a bi-Gaussian window. Further, the power spectrum density determination allowed for the detection of imperceptible high-frequency harmonic energy reflections, thus increasing the rate of arc-fault diagnosis and making it suitable for arc-fault monitoring of non-linear loads. The final samples were trained and classified using a 2D convolutional neural network and the overall accuracy of identification was observed to be 98.13%, which involved various domestic loads, thus providing a reference for follow-up arc-fault monitoring and inspection research.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 19","pages":"3029-3041"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13193","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13193","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
It is difficult to identify an arc fault accurately when the loads on the user side are more complicated, which hinders the development of low-voltage monitoring and pre-warning inspection. This study acquired a series of arc-fault signals according to IEC 62606. The main time-frequency features were strengthened with high efficiency by applying the generalized S-transform to them with a bi-Gaussian window. Further, the power spectrum density determination allowed for the detection of imperceptible high-frequency harmonic energy reflections, thus increasing the rate of arc-fault diagnosis and making it suitable for arc-fault monitoring of non-linear loads. The final samples were trained and classified using a 2D convolutional neural network and the overall accuracy of identification was observed to be 98.13%, which involved various domestic loads, thus providing a reference for follow-up arc-fault monitoring and inspection research.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf