Lead-free Cs2TiBr6 perovskite solar cells achieving high power conversion efficiency through device simulation

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Syamantak Gupta , Jaspinder Kaur , Rikmantra Basu , Ajay Kumar Sharma , Rahul Pandey , Jaya Madan
{"title":"Lead-free Cs2TiBr6 perovskite solar cells achieving high power conversion efficiency through device simulation","authors":"Syamantak Gupta ,&nbsp;Jaspinder Kaur ,&nbsp;Rikmantra Basu ,&nbsp;Ajay Kumar Sharma ,&nbsp;Rahul Pandey ,&nbsp;Jaya Madan","doi":"10.1016/j.micrna.2024.207991","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, lead-based perovskite solar cells (PSCs) have gained significant attention in the photovoltaic industry due to their remarkable properties such as high bandgap and high absorption coefficient. However, challenges such as toxicity, instability, and short shelf life limit the use of inorganic-organic lead-based PSCs. To address these issues, researchers introduced eco-friendly, lead-free, and stable cesium titanium (Cs<sub>2</sub>TiBr<sub>6</sub>) single-halide absorber material. The aim of this work is to perform the numerical modelling and simulation of FTO/SnO<sub>2</sub>/Cs<sub>2</sub>TiBr<sub>6</sub>/CBTS/Au structure incorporating interfacial defect layers (IDL) using SCAPS-1D to examine and study its characteristics properties about various photovoltaic (PV) parameters such as light-absorbing layer thickness, charge transport layer thickness, doping, defect density, operating temperature, and quantum efficiency (QE). After evaluating these parameters, the proposed single-halide Cs<sub>2</sub>TiBr<sub>6</sub>-based structure shows superior performance as compared to previously reported experimental and simulation-based Cs<sub>2</sub>TiBr<sub>6</sub> perovskite structures. The results show a maximum power conversion efficiency (PCE) of 24.24 %, with a fill factor (FF) of 88.9 %, an open-circuit voltage (V<sub>OC</sub>) of 1.31 V, and a short-circuit current density (J<sub>SC</sub>) of 20.76 mA/cm<sup>2</sup>. This work encourages researchers to develop low-toxic, and stable PSCs for the future solar cell industry.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"196 ","pages":"Article 207991"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, lead-based perovskite solar cells (PSCs) have gained significant attention in the photovoltaic industry due to their remarkable properties such as high bandgap and high absorption coefficient. However, challenges such as toxicity, instability, and short shelf life limit the use of inorganic-organic lead-based PSCs. To address these issues, researchers introduced eco-friendly, lead-free, and stable cesium titanium (Cs2TiBr6) single-halide absorber material. The aim of this work is to perform the numerical modelling and simulation of FTO/SnO2/Cs2TiBr6/CBTS/Au structure incorporating interfacial defect layers (IDL) using SCAPS-1D to examine and study its characteristics properties about various photovoltaic (PV) parameters such as light-absorbing layer thickness, charge transport layer thickness, doping, defect density, operating temperature, and quantum efficiency (QE). After evaluating these parameters, the proposed single-halide Cs2TiBr6-based structure shows superior performance as compared to previously reported experimental and simulation-based Cs2TiBr6 perovskite structures. The results show a maximum power conversion efficiency (PCE) of 24.24 %, with a fill factor (FF) of 88.9 %, an open-circuit voltage (VOC) of 1.31 V, and a short-circuit current density (JSC) of 20.76 mA/cm2. This work encourages researchers to develop low-toxic, and stable PSCs for the future solar cell industry.
通过器件模拟实现高功率转换效率的无铅 Cs2TiBr6 包晶体太阳能电池
最近,铅基过氧化物太阳能电池(PSCs)因其高带隙和高吸收系数等显著特性在光伏产业中获得了极大关注。然而,毒性、不稳定性和保质期短等挑战限制了无机-有机铅基 PSCs 的使用。为了解决这些问题,研究人员引入了环保、无铅和稳定的铯钛 (Cs2TiBr6) 单卤化物吸收体材料。这项工作的目的是利用 SCAPS-1D 对包含界面缺陷层(IDL)的 FTO/SnO2/Cs2TiBr6/CBTS/Au 结构进行数值建模和模拟,以检查和研究其与各种光伏(PV)参数(如光吸收层厚度、电荷传输层厚度、掺杂、缺陷密度、工作温度和量子效率(QE))有关的特性属性。在对这些参数进行评估后,与之前报道的基于实验和模拟的 Cs2TiBr6 包晶结构相比,所提出的基于单卤化物的 Cs2TiBr6 结构显示出更优越的性能。结果显示,最大功率转换效率 (PCE) 为 24.24%,填充因子 (FF) 为 88.9%,开路电压 (VOC) 为 1.31 V,短路电流密度 (JSC) 为 20.76 mA/cm2。这项工作鼓励研究人员为未来的太阳能电池产业开发低毒、稳定的 PSCs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信